

Return-Suction Filters

E 158 · E 198 · E 248

Tank top mounting · Connection up to G1¼ · Nominal flow rate up to 250 l/min

Return-Suction Filter E 198

Description

Application

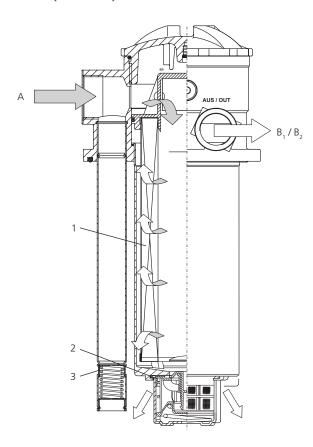
For operation in units with hydrostatic drives, when the return flow is under all operating conditions higher than the oil flow of the feed pump.

Performance features

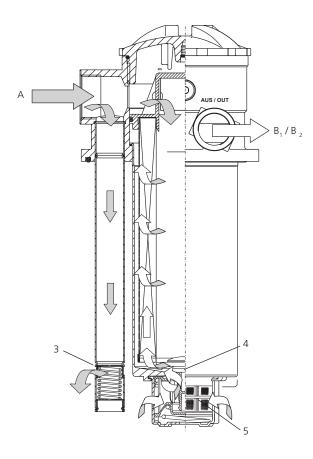
Protection against wear:

By means of filter elements that, in full-flow filtration, meet even the highest demands regarding cleanliness classes.

Suction filter function:


Because of the 100 %-filtration of the suction flow, no dirt can get into the feed pump.

Return filter function:


By means of full-flow filtration in the system return, the pumps above all are protected from dirt particles remainning in the system after assembly, repairs, or which are generated by wear or enter the system from outside.

www.argo-hytos.com Page 1

Function (schematic):

Emergency-suction (schematic):

Functional characteristics

The hydraulic oil returning from the circuit (A) passes the filter element (1), is pressurized by a 0,5 bar check valve (2) and supplied to the feed pump (B). The surplus oil flows filtered over the integral check valve into the reservoir.

As the feed pump is always fed with pressurized oil, the risk of cavitation is minimized and full performance is available even during the critical cold start phase.

An integral pressure relief valve (3) prevents too high back pressure and protects the shaft seals against damages. As this valve leads the oil directly into the tank there is no direct connection between the return line (A) and the connection of the feed pump (B) (no bypass valve function).

The emergency-suction valve (4) with 125 μ m protection strainer (5) supplies the feed pump in case of a short term of lack of oil. During normal operation, a lack of oil may definitely not occur (refer to "Design" section).

Start up/Deaeration

For units with emergency-suction valve and protection strainer the start up set E 198.1710 can be used to de-aerate the hydraulic system at first start up or at start up after repair; hereby the immediate supply of the feed pump with hydraulic oil is guaranteed.

For all other types, deaerating instructions published by the manufacturers of hydraulic drives must be observed.

Filter maintenance

By using a clogging indicator the correct moment for maintenance is indicated and guarantees therefore the optimum utilization of the filter elements

Filter elements

Flow direction from centre to the outside. The star-shaped pleating of the filter material results in:

- large filter surfaces
-) low pressure drop
- high dirt-holding capacities
- Iong service life

Dirt deposits are entirely removed when the element is changed and cannot re-enter the tank.

Accessories

Electrical and optical clogging indicators are available. Dimensions and technical data see catalogue sheet 60.20.

Page 2 www.argo-hytos.com

General

In machines with a hydrostatic drive and combined working hydraulic system, return-suction filters replace the suction or pressure filters previously required for the feed pump of the closed-loop hydrostatic drive circuit as well as the return filter for the open-loop working hydraulic circuit.

While each circuit operates independently with separate filters, the combination of the two circuits via the return-suction filter causes interaction between the circuits.

If the design criteria described below are taken into account, you can take full advantage of the benefits provided by the return-suction filter concept, thus making sure that your system performs reliably even under extreme operating conditions.

Required return flow in the system

In order to maintain a precharging pressure of approx. 0,5 bar at the intake of the feed pump, the return flow must exceed the suction flow under any operating condition: Special feature:

 Versions with hole (Ø 4 mm) in the pressurizing valve: at least 20 l/min of excess flow

Permitted feed pump flow rate

- at operating temperature (v < 60 mm²/s, rpm=max): feed pump flow rate < 0,5 x rated return flow according to column 2 of selection table
- at cold start-up (v < 1000 mm²/s, rpm = 1000 min⁻¹): feed pump flow rate < 0,2 x rated return flow according to column of selection table

Please contact us if your system operates with higher flow rates than stated above.

Flow velocity in the connecting lines

- > Flow velocity in the return lines < 4.5 m/s
- > Flow velocity in the suction lines < 1,5 m/s

Permitted pressure in the suction lines

At cold start up ($v < 1000 \text{ mm}^2/\text{s}$, rpm = 1000 min⁻¹): feed pump flow rate < 0,2 x rated return flow. The pressure loss in the suction lines must not exceed 0,4 bar.

Backpressures in system return lines

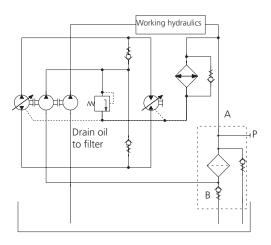
If drain oil from the hydrostatic drive is routed across the filter in addition to the flow of the open-loop circuit, the following has to be observed in order to protect the shaft seals:

- permitted leakage oil pressure for a given viscosity and speed (manufacturer's specifications!)
- > pressure loss caused by the leakage oil pipes
- > pressure loss caused by the oil cooler used
- backpressure of the filter for a given flow rate or kinematic viscosity (refer to pressure loss diagrams)

Depending on the application, the use of a cooler bypass valve is recommended.

Generously sized drain oil pipes are also of advantage.

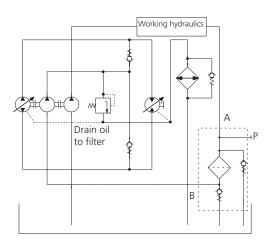
Filter fineness grades


With the filter fineness grades available, the following oil cleanliness according to ISO 4406 can be achieved:

10EX2: 18/15/11 ... 14/11/716EX2: 20/17/12 ... 17/14/10

Even with the 16EX2 filter fineness grade, the requirements specified by manufacturers of hydrostatic drives are sometimes exceeded significantly. If components requiring a still better oil purity are used, we recommend the 10EX2 filter fineness grade.

Suggested circuit layouts


A) The leakage oil of the hydrostatic drive is routed across the filter

The entire dirt produced in the hydrostatic drive by abrasion is filtered out immediately and is thus not taken in by the pump of the open-loop circuit.

This circuit layout is always recommended if the return flow only slightly exceeds the suction flow, i.e. if there is a risk that the 0,5 bar precharging pressure cannot be maintained.

B) The drain oil of the hydrostatic drive is not routed across the filter but is discharged directly into the tank.

This circuit layout has the advantage that drain oil pressures are comparatively low.

www.argo-hytos.com Page 3

Characteristics

Nominal flow rate

- > Up to 250 l/min in return line (see Selection Chart, column 2)
- > Up to 125 I/min feed pump flow rate (see Layout)
 The nominal flow rates indicated by ARGO-HYTOS are based on
 the following features:
- > closed by-pass valve at $v \le 200 \text{ mm}^2/\text{s}$
- element service life > 1000 operating hours at an average fluid contamination of 0,07 g per l/min flow volume
- flow velocity in the return lines ≤ 4.5 m/s
- > flow velocity in the suction lines ≤ 1,5 m/s

Connection

Threaded ports according to ISO 228 or DIN 13. Sizes see Selection Chart, column 6 and 7 (other port threads on request)

Filter fineness

10 μm(c) ... 16 μm(c) β-values according to ISO 16889 (see Selection Chart, column 4 and diagram Dx)

Dirt-holding capacity

Values in g test dust ISO MTD according to ISO 16889 (see Selection Chart, column 5)

Hydraulic fluids

Mineral oil and biodegradable fluids (HEES and HETG, see info-service 00.20).

Temperature range

-30 °C ... +100 °C (temporary -40 °C ... +120 °C)

Viscosity at nominal flow rate

- → at operating temperature: v < 60 mm²/s
 </p>
- as starting viscosity: $v_{max} = 1000 \text{ mm}^2/\text{s}$
- > at initial operation:

The recommended starting viscosity can be read from the diagram D (pressure drop as a function of the kinematic viscosity) as follows: Find the 70 % Δ p of the cracking pressure of the by-pass valve on the vertical axis. Draw a horizontal line so that it intersects the Δ p curve at a point. Read this point on the horizontal axis for the viscosity.

Operating pressure

Max. 10 bar

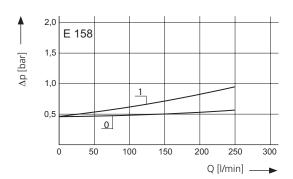
Materials

Screw-on cap: Polyester, GF-reinforced
Filter head: Aluminium alloy
Filter bowl: Aluminium alloy
Seals: NBR (FPM on request)

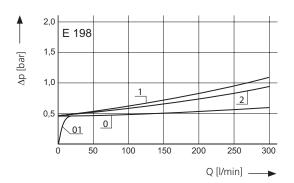
Filter media: EXAPOR®MAX 2 - inorganic multi-layer

microfibre web

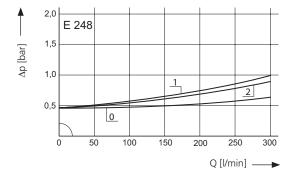
Fitting position

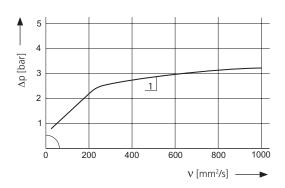

- > Standard type no restriction, preferably vertical
- Models with emergency-suction valve can vary up to 15° from the vertical
- Models with hole Ø 4 mm in the check valve can vary up to 45° from the vertical

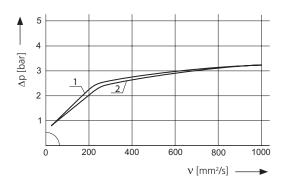
Even under unfavourable operating conditions (min. oil level, max. sloping) the oil outlet resp. emergency suction has to be below the oil level.

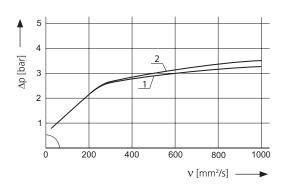

Special designs are available for horizontal assembly.

 Δp -curves for complete filters in Selection Chart, column 3 (50 % of the nominal flow volume via connection B)

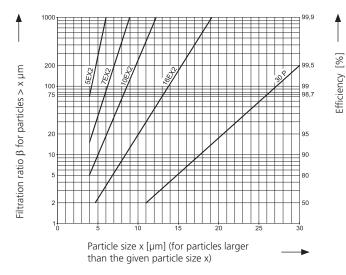

Pressure drop as a function of the **flow volume** at $v = 35 \text{ mm}^2/\text{s}$ (0 = casing empty with hole Ø 4 mm)


Pressure drop as a function of the **flow volume** at $v = 35 \text{ mm}^2/\text{s}$ (0 = casing empty with hole Ø 4 mm)


Pressure drop as a function of the **flow volume** at $v = 35 \text{ mm}^2\text{/s}$ (0 = casing empty with hole Ø 4 mm)


Pressure drop as a function of the **kinematic viscosity** at nominal flow

Pressure drop as a function of the **kinematic viscosity** at nominal flow


Pressure drop as a function of the **kinematic viscosity** at nominal flow

www.argo-hytos.com

Filter fineness curves in Selection Chart, column 4

Dx Filtration ratio β as a function of particle size x obtained by the Multi-Pass-Test according to ISO 16889

The abbreviations represent the following $\ensuremath{\beta}\xspace\text{-values}$ resp. finenesses:

For EXAPOR®MAX 2 and Paper elements:

5EX2 =	$\overline{\underline{\beta}}_{5 (c)} = 200$	EXAPOR®MAX 2
7EX2 =	$\overline{\beta}_{7(c)} = 200$	EXAPOR®MAX 2
10EX2 =	$\underline{\underline{\beta}}_{10 \text{ (c)}} = 200$	EXAPOR®MAX 2
16EX2 =	$\underline{\underline{\beta}}_{16 (c)} = 200$	EXAPOR®MAX 2
30P =	$\frac{1}{6} = 200$	Paper

Based on the structure of the filter media of the 30P paper elements, deviations from the printed curves are quite probable.

For special applications, finenesses differing from these curves are also available by using special composed filter material.

Page 6 www.argo-hytos.com

\$\$. T. W	. Romi	of Signature of Si	Re Street	o. Oil	ot job of	ill of	in Ca		To the state of th	THE THE PARTY OF T		o. Me series	it git gerat
	l/min			g			bar	bar				kg	
1	2	3	4	5	6	7	8	9	10	11	12	13	14
E 158-168	180	D1 /1	16EX2	53	G11/4	G1	0,5	2,5	4	•	V3.0924-08	3,0	4
E198-156	180	D2 /1	10EX2	73	G11⁄4	G1	0,5	2,5	1		V3.0934-06	3,7	-
E 198-186	180	D2 /1	10EX2	73	G11⁄4	G1	0,5	2,5	4	•	V3.0934-06	3,8	4
E 198-158	200	D2 /2	16EX2	73	G11/4	G1	0,5	2,5	1		V3.0924-08	3,7	-
E 198-168	200	D2 /2	16EX2	73	G11⁄4	G1	0,5	2,5	2		V3.0934-08	3,7	3
E 198-188	200	D2 /2	16EX2	73	G11/4	G1	0,5	2,5	4	•	V3-0934-08	3,8	4
E 198-468	200	D2 /2	16EX2	73	G11⁄4	G1	0,5	2,5	3	•	V3.0934-08	3,8	4+5
E 248-156	190	D3 /1	10EX2	89	G11⁄4	G1	0,5	2,5	4	•	V3.0941-06	4,3	4
E 248-158	250	D3 /2	16EX2	90	G11⁄4	G1	0,5	2,5	4	•	V3.0941-08	4,3	4
E 248-258	250	D3 /2	16EX2	90	G1¼	G1	0,5	2,5	1		V3.0941-08	4,2	-

¹ Cracking pressure of check valve

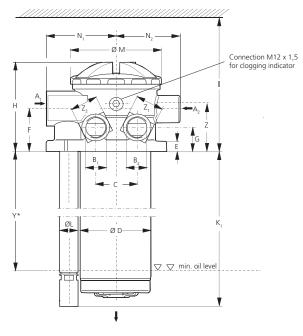
All filters are delivered with three plugged clogging indicator connections M12 x 1,5. As clogging indicators on the return side (P_1) either manometers or electrical pressure switches can be used. The monitoring of the vacuum on the suction side (P_2) is additionally possible.

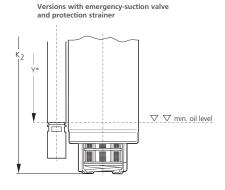
A second return port A₂ can be opened on request.

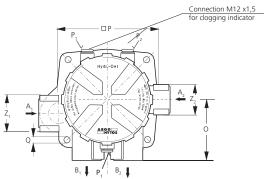
For the appropriate clogging indicators see catalogue sheet 60.20.

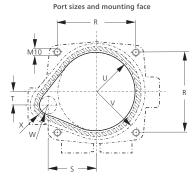
Remarks:

- > The start of the red area respectively the switching pressure of the electrical pressure switch has always to be lower than the cracking pressure of the pressure relief valve (see Selection Chart, column 9).
- > Clogging indicators are optional and always delivered detached from the filter.
- > The filters listed in this chart are standard filters. If modifications are required, e.g. with integrated suction valve (integrated into the pressure relief valve) to guarantee the emergency steering feature for vehicles with official road use, we kindly ask for your request.
- ightharpoonup For deaeration a bleed screw (for connection P_1) with Part No. SV 0112.15 is available.

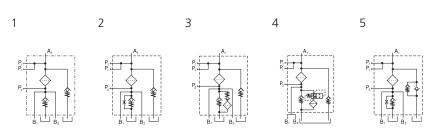

www.argo-hytos.com Page 7


² Cracking pressure of pressure relief valve


³ With hole Ø 4 mm in the check valve for oil drain when opening the filter cover


⁴ With emergency-suction valve and protection strainer (mesh size 125 μm)

⁵ Suitable for horizontal assembly



Measurements

Туре	A ₁	A ₂	B _{1/2}	С	D	Е	F	G	Н	I	K ₁	K ₂	L	М	N ₁	N ₂
E 158	G11/4	_	G1	56	100	11,5	61,5	30,5	130	430	238	250	28,5	126,5	97	81,5
E 198	G11/4	_	G1	56	100	11,5	61,5	30,5	130	530	338	354	28,5	126,5	97	81,5
E 248	G11/4	_	G1	56	100	11,5	61,5	30,5	130	600	404	417	28,5	126,5	97	81,5
Туре	0	Р	Q	R	S	Т	U	V	W	X	Y*	Z	Z ₁	Z ₂		
E 158	85,5	141	11	116,5	68	19,5	51	64	14,5	27	185	68	AF55	AF41		
E 198	85,5	141	11	116,5	68	19,5	51	64	14,5	27	285	68	AF55	AF41		
E 248	85.5	141	11	116.5	68	19.5	51	64	14.5	27	350	68	AF55	AF41		

 $^{^{\}star}$ Oil outlet resp. emergency suction has to be under all operating cond. below min. oil level (given by Y)

Symbols

Page 8 www.argo-hytos.com

Pos.	Designation	Part No.
1	Screw-on cap	ES 074.0206
2	O-ring 100 x 4	N007.1004
3	O-ring 98 x 3	N007.0983
4	Filter element	see Chart / col. 11
5	O-ring 124 x 4,5	N007.1245

The functions of the complete filters as well as the outstanding features of the filter elements assured by ARGO-HYTOS can only be guaranteed if original ARGO-HYTOS spare parts are used.

Quality Assurance

Quality management according to DIN EN ISO 9001

To ensure constant quality in production and operation, ARGO-HYTOS filter elements undergo strict controls and tests according to the following ISO standards:

ISO 2941	Verification of collapse/burst pressure rating
ISO 2942	Verification of fabrication integrity (Bubble Point Test)
ISO 2943	Verification of material compatibility with fluids
ISO 3968	Evaluation of pressure drop versus flow characteristics
ISO 16889	Multi-Pass-Test (evaluation of filter fineness and dirt-holding capacity)
ISO 23181	Determination of resistance to flow fatigue using high viscosity fluid

Various quality controls during the production process guarantee the leakfree function and solidity of our filters.

 $Illustrations \ may \ sometimes \ differ \ from \ the \ original. \ ARGO-HYTOS \ is \ not \ responsible \ for \ any \ unintentional \ mistake \ in \ this \ specification \ sheet.$

www.argo-hytos.com