Multi Loop Controller sysTemp classic ETR 132 II

Features

- Effective, versatile multi zone temperature controller module for up to 32
3 -point zones
- Application of
- hot runners
- plastics processing
- packaging industry
- furnaces and ovens
- food processing
- dryers, etc.
- Modular structure one base unit and up to three expansion units
- Per unit 8 measurement inputs, 16 control outputs and 24 measurement inputs (8×3 phase) for heating current monitoring
- Three alarm outputs and two digital inputs
- Software update feasible by interface
- Complete functional range for a large scope of application
- Precise and fast control algorithm
- All hot runner functions (start up mode, boost, manual mode, etc.)
- Automatic or manual temperature ramp function
- Group functions for e.g. heating-up processes in cascades
- Controller completely configurable by Windows engineering tool WinKonVis
- Interfaces:
- RS485 and configuration interface RS232 concurrently usable
- CANopen
- Profibus-DP

Benefits

- Good price-performance ratio due to modular structure
- Flexibility through large array of functions
- Optimal product quality and low reject rates due to high control performance and intelligent zone monitoring
- Production reliability through close process monitoring
- Quick and easy system installation
- Expandability through numerous peripheral components
- Minimal configuration effort since the devices are already delivered in the user specific configuration

Function

- High resolution, digital signal processing on measuring inputs with short sampling rates
- Calculation of output signal by powerful micro processor unit
- Provision of output signal by intelligent pulse group distribution to control outputs
- For user imperceptible, fully automatic adaptation (identification phase) of controller of a zone during heating-up phase
- Automatic cooling adaptation
- Monitoring of zones (sensor, temperature, heating current, etc.) and alarm output by three configurable alarm outputs
- Heat current monitoring configurable one transformer for each control zone or one transformer for multiple control zones
- Complex alarm - and monitoring functions (e.g. automatic or manual sensor monitoring of short circuit)
- Data communication by various interfaces
- RS485[PSGII/MODBUS]
- CANopen
- Profibus-DP

Technical Data

| Measurement inputs | Number: 8 per unit
 Resolution: AD conversion with 14 Bit, resolution: temperature value $1 / 10{ }^{\circ} \mathrm{C}$ Thermocouple/Pt100 \| d.c. voltage | D.C.
 Sampling cycle: 500 ms / input |
| :---: | :---: |
| Thermocouple | Type configurable $\mathrm{L}\left(-35 \ldots 500^{\circ} \mathrm{C}\right)$, J $\left(-35 \ldots 500^{\circ} \mathrm{C}\right)$, $\mathrm{K}\left(-35 \ldots 900^{\circ} \mathrm{C}\right)$,
 TCPt/1300 Type K ($-35 \ldots 1300^{\circ} \mathrm{C}$)
 Temperature compensation included
 Sensor - and balancing cable respectively connect to controller
 Input resistance >47 kOhm
 Accuracy of measurement: < 1K
 Control of sensor break, reversed polarity and short circuit |
| | $\text { Pt100 }\left(-35 \ldots . .450^{\circ} \mathrm{C}\right)$
 Connection: 3-wire without adjustment
 Connection: 2-wire, internal actual value correction or external terminating resistor
 Accuracy of measurement: < 1 K
 Control of sensor break |
| | Measurement range $0 \ldots 10 \mathrm{~V}, 2 \ldots 10 \mathrm{~V}$
 Display range adjustable $0 . . .999{ }^{\circ} \mathrm{C}$
 Input resistance > 10 kOhm
 Maximum tolerable input voltage $<=30 \mathrm{~V}$
 Control of line-break (for measurement range $2 \ldots 10 \mathrm{~V}$) |
| | Measurement range 0... $20 \mathrm{~mA}, 4 \ldots 20 \mathrm{~mA}$
 Display range adjustable $0 . . .999^{\circ} \mathrm{C}$
 Input resistance 50 Ohm
 Control of line-break (for measurement range 4... 20 mA) |
| Measurement input heating current monitoring | Three-phase per heating circuit; with external current transformer (please refer to accessories) Input voltage 42 mV Eff/A Input resistance 20 kOhm |
| Digital inputs (only base unit) | Number: 2; configurable
 Optical coupler
 Maximum voltage 30 VDC
 Current demand approx. 12 mA |
| Alarm outputs | Number: 3; configurable
 Optical coupler
 Max. load 30VDC, 60mA
 Inductive load only with external free-wheeling diode switchable |
| Control outputs | Heating, Cooling
 Optical coupler
 Max. load 30VDC, 60mA
 Inductive load only with external free-wheeling diode switchable |
| Data interfaces (per base unit) | |
| V24 configuration interface / RS485 | Galvanically isolated; RS232 for 230 V not galvanically isolated Transfer rate 1200/2400/4800/9600/19200 Baud
 Stop - and parity bit adjustable
 Protocol: MODBUS RTU / PSGII |
| | 2/4 wire |
| | Connection of superior control system or intelligent local periphery
 CANopen - DS401 |
| Profibus-DP | Connection of control system with superior PLC or control EN 50170 V2 |
| Electrical security | DIN EN 61010 (VDE 0411)
 Protection class II Degree of pollution 2 Over voltage category II |
| Power supply (only base unit see X11) | 24 V ; external fuse protection of device 4 A time lag. 230 VAC ; external device fuse protection 2 A time lag. |
| Power consumption | Base unit: max. 25 VA on load; Expansion unit: ca. 2 VA |
| Max. allowed cable diameter for term. | $1.5 \mathrm{~mm}^{2}$; power supply X11: $2.5 \mathrm{~mm}^{2}$ |
| Ambient temperature limit | Operation: $0 \ldots . .60^{\circ} \mathrm{C}$, Transport, storage: $-25 . .60^{\circ} \mathrm{C}$ |
| Atmospheric humidity limit | Average relative atmospheric humidity $<75 \%$ per year, no condensation |
| Mounting | Installation on DIN rail (DIN EN 50022)
 Maximal three expansion units (E) connectable to one base unit (G) |
| Dimensions ($\mathrm{H} \times \mathrm{W} \times \mathrm{D}$ in mm) | Base unit $140 \times 125 \times 75$ Order designation TPDK $155 \times 125 \times 75$
 Expansion unit $140 \times 125 \times 30 \mid$ \| Order designation TPDK $155 \times 125 \times 30$ |

Housing	Metal housing
Weight	Base unit Expansion unit ca. 1.2 kg ca. 0.7 kg
Protection type	Housing and terminals: IP 20, D-SUB without PVC cover: IP 00 (X8, X9, X10)
CE marking	The device complies with the European Directives for electromagnetic compatibility and low volt- ages.
General	LED displays Data backup
	Status display, for function please refer to operating manual
	Data backup of all parameters in EEPROM (power failure save)
	Software update
	By interface serial \| CAN

Connection overview

Base unit G

Expansion unit E

Notice: The terminal marking was modified. Here the new/old (identified by NEW/OLD) terminal marking is described.

Pin assignment
Note EMC
Due to EMC conventions signal and measurement lines have to be shielded! Shields have to be connected to the existing grounded terminals on the controller or the central grounded shield in the cabinet.
Note
For all terminals pin 1 is on the left hand (refer to view in terminal overview).

X1 control outputs Heating X2 control outputs Cooling
 X3 \& X4 Heating Current Monitoring

PIN	X1 NEW	X2 NEW
1	UH1)	UC1)
2	UH2))	UC2)
3	OH1	OC1
4	OH2	OC2
5	OH3	OC3
6	OH4	OC4
7	OH5	OC5
8	OH6	OC6
9	OH7	OC7
10	OH8	OC8

PIN	X1 OLD	X2 OLD
1	UH1)	UK1)
2	UH2))	UK2))
3	H1	K1
4	H2	K2
5	H3	K3
6	H4	K4
7	H5	K5
8	H6	K6
9	H7	K7
10	H8	K8

Note

) UH1/UC1 +12 V from $\times 7 / 8$ or $U_{\text {ext }}$ or from auxiliary terminal UH2/UC2 from other module.
)) UH2/UC2 auxiliary terminal with the same electric potential like UH1/UC1 and can be used for the power supply of further outputs on other modules.

PIN	$\begin{aligned} & \text { X3 } \\ & \text { NEW } \end{aligned}$	$\begin{aligned} & \text { X4 } \\ & \text { NEW } \end{aligned}$	PIN	$\begin{array}{\|l\|} \text { X3 } \\ \text { OLD } \end{array}$	$\begin{array}{\|l\|} \text { X4 } \\ \text { OLD } \end{array}$
1	C11	C51	1	111	151
2	C12	C52	2	112	152
3	C13	C53	3	113	153
4	C21	C61	4	121	161
5	C22	C62	5	122	162
6	C23	C63	6	123	163
7	C31	C71	7	131	171
8	C32	C72	8	132	172
9	C33	C73	9	133	173
10	C41	C81	10	141	181
11	C42	C82	11	142	182
12	C43	C83	12		1803 *
13	COV	cov	13		
14	ヵ	カ	14	A	A

Note *
Do not connect COV system overall! Do not ground COV terminal externally!

Specifications apply for all measurement inputs.

For the individual current measurement there exists a fixed assignment of measurement input and zone. For a flex current measurement the assignment is adjustable.

The specifications apply for all control outputs Heating/ Cooling.

X5 \＆X6 Measurement inputs

PIN	$\begin{aligned} & \text { X5 } \\ & \text { NEW } \end{aligned}$	$\begin{aligned} & \text { X6 } \\ & \text { NEW } \end{aligned}$	PIN	$\begin{aligned} & \text { X5 } \\ & \text { OLD } \end{aligned}$	$\begin{aligned} & \text { X6 } \\ & \text { OLD } \end{aligned}$
1	1＋	5＋	1	F1＋	F5＋
2	1 －	5－	2	F1－	F5－
3	$2+$	6＋	3	F2＋	F6＋
4	2－	6－	4	F2－	F6－
5	3＋	7＋	5	F3＋	F7＋
6	$3-$	7－	6	F3－	F7－
7	4＋	8＋	7	F4＋	F8＋
8	4－	8－	8	F4－	F8－
9	OV＊	OV＊	9	GND＊	GND＊
10	カ	カ	10	カ	カ

Thermocouple TC，
resistance thermometer Pt100

OV
TC

Pt100
3－wire

Standard signal U［0／2．．． 10 VDC］，I
［0／4．．． 20 mA ］

$\mathrm{n}+$	－＋	$\underline{-}$
n －		
OV		－
	Voltage U	Current I

The specifications apply for all measure－ ment inputs．
Note＊
Do not connect OV（GND）system overall！Do not ground OV（GND）terminal externally！

X11 power supply

（only base unit）

	$24 ~ V$	230 VAC
PIN	$18 \ldots 24 ~ V A C$ $18 \ldots 36 ~ V D C ~$	$85 \ldots 250$ VAC
1	$\sim /+$	N
2	$\underline{=}$	\square
3	$\sim /-$	L

Fuse protection external
24 V ： 4 A time lag
230 VAC ： 2 A time lag

X7 Alarm outputs 1．．．3，digital signal inputs 1．．． 2
（only base unit）

PIN	X7 NEW	X7 OLD	Description
1	I2	IN2	Digital signal input 2
2	I1	IN1	Digital signal input 1
3	I－	IN－	Reference potential I＊
4	AL3	AL3	Alarm Output 3
5	AL2	AL2	Alarm Output 2
6	AL1	AL1	Alarm output 1
7	AL＋	AL＋	Power supply alarm outputs
8	$+U$	＋U	Auxiliary voltage +
9	$-U$	U－	Auxiliary voltage－
10	Al	At	HF ground

Auxiliary voltage $+\mathbf{U} /-\mathbf{U}$

For controller with 18．．． 36 VDC：24VDC
Maximum output current： 1.5 A
Do not ground externally！

Digital signal inputs I1．．．I2

Alarm outputs AL1．．．AL3

$+U$ exclusively for control of SSR（con－ sider load curve）as well as power supply for the operating and display unit．

X8	L2－DP（interface Profibus－DP）			
X9	RS485／V24（serial interface）			
X10 CAN（interface CAN				
PIN	$\begin{gathered} \mathrm{X} 8 \\ \perp \end{gathered}$	$\begin{gathered} \mathrm{X} 9 \\ \perp \end{gathered}$		X10 CANopen
1		TxD－P	$+\mathrm{U}$	
2		TxD－N		CAN－L
3	TxD－B	TxD－V24		
4	RTS			
5	0 V	RxD－N	GND	
6	＋5VDC	RxD－P		
7			CAN－L	CAN－H
8	TxD－A	RxD－V24		
9		GND－V24	CAN－H	
For assignment of $\mathrm{X} 10-\mathrm{CAN}$－ Bus refer to order information．				

Configuration

Depending on the used firmware the DIP switch has different functions.

Firmware S

Addressing
CAN Baud Rate
Activation of default setting

Activation of default setting
Selection of addressing type
Addressing

Firmware S
Static
Addressing

Firmware Identifier
08, 33, 37, 37...S, 48,
$58,68,68 \ldots K, 92,88$

Firmware SD
Static/Dynamic
Addressing

Firmware Identifier
06, 32, 36, 46, 56, 66,
86

Firmware SD

DIP 8 is without function.

Device ID/ Addressing (DIP 1... 4 and/or 1...5) Addressing mode (DIP 6 Firmware SD)

The device ID is binary coded. The setting of the device ID is done by DIP switch $1 \ldots 4$ (Firmware S) and/or DIP switch $1 \ldots 5$ (Firmware SD) depending on the firmware.
Using firmware SD (DIP switch 6) it can additionally be chosen between static and dynamic addressing for the serial data interface.

Static Addressing of Serial Interface (Firmware version S and/or SD \& DIP 6 = OFF)

At static addressing 8 zones are addressed by one address.
For the controller the zone number is defined by 32 . The 32 zones therefore reserve 4 addresses.
The address of the controller is dependent on the DIP switch a multiple of 4 .

Dynamic Addressing of Serial Interface (Firmware SD \& DIP 6 = ON)

At dynamic addressing 8 zones are addressed by one address.
For the controller the number of the really existent modules (1 base unit [G], maximal 3 expansion units [E]) is relevant. On the basic unit the device ID is set. For the base unit as well as for the attached expansion units, 8 zones are addressed by one address. The DIP switch has to be set accordingly. Specify on the next base unit the Device ID of the Previous Base Unit + Number of Expansion Units +1.

The resulting address/NodeID is a combination of the interface depending base part and the device ID. The base part is configured, the device ID is set by DIP switch ($1 \ldots 4$ and/or $1 \ldots 5$).

For the setting of other interface parameters please refer to the operating instructions.

DIP 5... 6 (Firmware S) baud rate CAN
For controllers with firmware S the baud rate for CAN is set by DIP switch $5 \ldots$. . The system parameter CANB is without function.

DIP 5	DIP 6	Baud rate CAN
OFF	OFF	78.8 kBit (PSG)
ON	OFF	250 kBit
OFF	ON	500 kBit
ON	ON	125 kBit

For controllers with firmware SD the baud rate is set by system parameter CANB.

Standard setting

Serial interface (X9)

By the DIP switch $7=$ ON, the default settings for the serial interface (X9) are activated:

- Address (see configuration device ID/ addressing, address mode)
- Protocol PSG II
- Baud rate 19200 Baud
- No parity
- 1 Stop bit

PSG-CAN interface (X10)
By the DIP switches $1 \ldots 5=$ ON, and DIP switch $7=$ ON, the default settings for PSG-CAN (X10) are activated:

- CADR: CAN-Node-ID = 32
- CANB: Baud rate CAN = PSG
- A-OP: Auto-Operational mode ON

CANBus termination

Connecting Pin3 and Pin4 on terminal X10 activates the internal CANBus termination impedance of 120 Ohm. Ordering designations

	Enter ordering designations		
$\begin{aligned} & \mathrm{G} \\ & \mathrm{E} \end{aligned}$	Base module Expansion module	$\begin{gathered} \text { ETR132II } \\ G \end{gathered}$	$\begin{gathered} \text { ETR132 } \\ E \end{gathered}$
Module K FZ F DK DFZ	Screw terminal Spring terminal Ribbon cable Double deck terminal (only X5, X6) Double deck spring-force terminal (only $\mathrm{X} 5, \mathrm{X}$)		
Control output HO	Heating Not existing		
Control output KO	Cooling Not existing		
Input TCPt TCPt/1300 U I	Thermocouple / Pt100 Thermocouple up to $1300^{\circ} \mathrm{C}$ Standard signal U ($0 / 2 \ldots 10 \mathrm{~V}$) Standard signal I ($0 / 4 \ldots 20 \mathrm{~mA}$) Not existing		
Heating current recording STI	Heating current recording Not existing		
Data interface 2 CAN CANopen	CAN-Bus with PSG-CAN pin assignment CAN-Bus with CANopen conform pin assignment Not existing		n.a.
Data interface 3 Profi	Profibus-DP Not existing		n.a.
Voltage 24 V 230 VAC	$\begin{aligned} & \mathrm{AC} / \mathrm{DC} \\ & \mathrm{AC} \end{aligned}$		n.a.

Scope of supply

CD-ROM with documentation and software

Accessories

For details of the large range of accessories please refer to the data sheet control systems system SYSIEMP ${ }^{\circ}$ system description SYSEEMP ${ }^{\circ}$ bus.

