DULCOMETER® D1Cb / D1Cc

Allgemeine Gleichbehandlung

Dieses Dokument verwendet die nach der Grammatik männliche Form in einem neutralen Sinn, um den Text leichter lesbar zu halten. Es spricht immer Frauen und Männer in gleicher Weise an. Die Leserinnen bitten wir um Verständnis für diese Vereinfachung im Text.

Ergänzende Anweisungen

Lesen Sie bitte die ergänzenden Anweisungen durch.

Besonders hervorgehoben sind im Text:

- Aufzählungen
- Handlungsanweisungen
 - ⇒ Ergebnisse der Handlungsanweisungen

Infos

ĵ

Eine Info gibt wichtige Hinweise für das richtige Funktionieren des Geräts oder soll Ihre Arbeit erleichtern.

Sicherheitshinweise

Sicherheitshinweise sind mit ausführlichen Beschreibungen der Gefährdungssituation versehen, siehe & *Kapitel 1.1 "Kennzeichnung der Sicherheitshinweise" auf Seite 7*

Inhaltsverzeichnis

1	Einleitung	. 7
	1.1 Kennzeichnung der Sicherheitshinweise	. 7
	1.2 Benutzer Qualifikation	. 9
	1.3 Allgemeine Sicherheitshinweise	10
	1.4 Bestimmungsgemäße Verwendung	12
	1.5 ID-Code	13
2	Funktionsbeschreibung	16
	2.1 Wandaufbau/Schalttafeleinbau	17
	2.2 Elektrischer Aufbau	18
	2.2.1 Blockschaltbild	19
	2.2.2 Galvanische Trennung	20
3	Montage D1Cb	21
	3.1 Lieferumfang	22
	3.2 Montage (Wandaufbau)	23
	3.3 Montage - Schalttafeleinbau (Option)	24
	3.4 Installation D1Cb Wandaufbau (Elektrisch)	26
	3.4.1 Öffnen des Gerätes	27
	3.4.2 Installation elektrisch bei Wandaufbau	28
	3.4.3 Installation elektrisch bei Schalttafelmontage	29
	3.4.4 Installation Koaxialkabel an Schirmklemme XE1	30
	3.4.5 Leiterquerschnitte und Aderendhülsen	31
	3.4.6 RC-Schutzbeschaltung (Option)	32
	3.4.7 Klemmenplan	33
	3.5 Das Schalten von induktiven Lasten	37
4	Montage D1Cc	39
	4.1 Lieferumfang DULCOMETER [®] D1Cc	40
	4.2 Montage - Schalttafeleinbau DULCOMETER® D1Cc	40
	4.3 Installation elektrisch bei Schalttafelmontage	43
	4.3.1 Installation Koaxialkabel an Schirmklemme XE1	44
	4.3.2 Leiterquerschnitte und Aderendhülsen	31
	4.3.3 Klemmenplan	47
	4.4 Das Schalten von induktiven Lasten	37

5	Inbetriebnahme	51
	5.1 Erstinbetriebnahme	51
	5.1.1 Auswahl der Bedienersprache	51
	5.1.2 Auswahl der Messgröße und des Messbereiches	53
	5.2 Freischaltcode für Funktionserweiterungen	54
	5.2.1 Funktionserweiterung über Freischaltcode	54
6	Bedienschema/Symbole Display	58
	6.1 Geräteübersicht / Bedienelemente	58
	6.2 Symbole der Display-Anzeige	59
	6.3 Daueranzeige 1	60
	6.4 Daueranzeige 2	61
	6.5 Daueranzeige 3	61
	6.6 Bedienschema	62
	6.7 Bedienmenü eingeschränkt / vollständig	65
	6.8 Fehlermeldungen	65
	6.8.1 Fehleranzeige	66
	6.9 Allgemeine Einstellungen	66
	6.9.1 Zugangscode	66
7	Messgrößen und Bedienmenüs für amperometrische Sensoren	69
	7.1 Bedienmenü eingeschränkt / vollständig	65
	7.2 Beschreibung aller amperometrischen Messgrößen	70
	7.3 Eingeschränktes Bedienmenü	72
	7.4 Vollständiges Bedienmenü / Beschreibung aller Messgrößen	73
	7.5 Kalibrierung aller amperometrischen Messgrößen	74
	7.6 Kalibrierung des Sensors für amperometrische Messgrößen	75
	7.6.1 Vorbereitung der Kalibrierung der Sensoren der amperometrischen Messnrößen	75
	7.6.2 Kalibrierung von Nullpunkt und Steilheit.	76
	7.7 Korrekturwert	79
8	Messgrößen und Bedienmenüs für potentiometrische Sensoren	80
	8.1 Bedienmenü eingeschränkt / vollständig	65
	5 5	-
	8.2 Beschreibung der Messgrößen pH. Redox und Fluorid	81
	8.2 Beschreibung der Messgrößen pH, Redox und Fluorid8.3 Eingeschränktes Bedienmenü pH / Redox / Fluorid	81 82
	 8.2 Beschreibung der Messgrößen pH, Redox und Fluorid 8.3 Eingeschränktes Bedienmenü pH / Redox / Fluorid 8.4 Vollständiges Bedienmenü / Beschreibung pH / Redox / Fluorid 	81 82 84
	 8.2 Beschreibung der Messgrößen pH, Redox und Fluorid 8.3 Eingeschränktes Bedienmenü pH / Redox / Fluorid 8.4 Vollständiges Bedienmenü / Beschreibung pH / Redox / Fluorid 8.5 Kalibrierung von pH-, Redox- und Fluorid-Sensoren 	81 82 84 85

	8.5.2 Kalibrierung von pH-Sensoren. Beschreibung der Einstellbereiche	89
	8.5.3 Kalibrierung von pH-Sensoren. Beschreibung der Fehlermeldungen	89
	8.5.4 Prüfen des Redox-Sensor	90
	8.5.5 Beschreibung der Kalibrierung von Fluorid-Sensoren	92
	8.6 Korrekturwert Temperatur für pH- und Fluorid-Sensoren	96
9	Messgrößen und Bedienmenüs für das Normsignal allgemein	98
	9.1 Erläuterung zum Normsignal allgemein	98
	9.2 Messgröße ändern	100
	9.3 Bedienmenü eingeschränkt / vollständig	65
	9.4 Beschreibung aller Messwerte/Messgrößen Normsignal	101
	9.5 Eingeschränktes Bedienmenü	102
	9.6 Vollständiges Bedienmenü / Beschreibung aller Messgrößen	104
	9.7 Kalibrieren des Normsignals	104
	9.7.1 Kalibrieren des Nullpunktes des Normsignal allgemein	106
	9.7.2 Zweipunktkalibrierung des Normsignal allgemein	107
10	Messgrößenunabhängige Bedienmenüs	109
	10.1 Pumpen	110
	10.2 Relais einstellen	112
	10.2.1 Einstellung und Funktionsbeschreibung der Relais	113
	10.3 Einstellen der Grenzwerte	118
	10.4 Regelung einstellen	121
	10.5 Dosierkontrolle einstellen	123
	10.6 mA-Ausgang einstellen	126
	10.7 Allgemeine Einstellungen	127
	10.7.1 Messgröße/Messbereich einstellen	128
	10.7.2 [Messwert] einstellen	128
	10.7.3 Unterfunktionen des Menüs "Allgemeine Einstellungen"	129
11	Wartung	134
	11.1 Sicherungswechsel DULCOMETER® D1Cb / D1Cc	134
	11.2 Zusammenfassung der Fehlertexte	136
12	Technische Daten	139
	12.1 Umweltbedingungen DULCOMETER® D1Cb / D1Cc	139
	12.2 Schalldruckpegel	139
	12.3 Werkstoffangaben	140
	12.4 Chemische Beständigkeit	140

Inhaltsverzeichnis

	12.5 Maße und Gewichte	141
13	Elektrische Daten	142
14	Ersatzteile und Zubehör DULCOMETER® D1Cb / D1Cc	146
15	Altteileentsorgung	148
16	Eingehaltene Normen und Konformitätserklärung	149
17	Index	150

1 Einleitung

Diese Betriebsanleitung beschreibt die technischen Daten und Funktionen des DULCOMETER[®] Reglers der Baureihe D1Cb / D1Cc.

Diese Betriebsanleitung ist gültig für die Softwareversion des Reglers: D1Cb ⋝ 01.04.01.00 // D1Cc ⋝ 01.02.01.00. Regler mit älteren Softwareversionen müssen auf die neueste Softwareversion gebracht werden.

ĵ

Die Regler DULCOMETER® D1Cb und DULCOMETER® D1Cc unterscheiden sich in der Gehäuseausführung und Montagesituation, nicht aber in der Funktionalität, voneinander.

1.1 Kennzeichnung der Sicherheitshinweise

Einleitung

Diese Betriebsanleitung beschreibt die technischen Daten und Funktionen des Produktes. Die Betriebsanleitung gibt ausführliche Sicherheitshinweise und ist in klare Handlungsschritte aufgegliedert.

Sicherheitshinweise und Hinweise gliedern sich nach dem folgenden Schema. Hierbei kommen verschiedene, der Situation angepasste, Piktogramme zum Einsatz. Die hier aufgeführten Piktogramme dienen nur als Beispiel.

Art und Quelle der Gefahr

Folge: Tod oder schwerste Verletzungen.

Maßnahme, die ergriffen werden muss, um diese Gefahr zu vermeiden.

Gefahr!

 Bezeichnet eine unmittelbar drohende Gefahr. Wenn sie nicht gemieden wird, sind Tod oder schwerste Verletzungen die Folge.

Art und Quelle der Gefahr

Mögliche Folge: Tod oder schwerste Verletzungen.

Maßnahme, die ergriffen werden muss, um diese Gefahr zu vermeiden.

Warnung!

 Bezeichnet eine möglicherweise gefährliche Situation. Wenn sie nicht gemieden wird, können Tod oder schwerste Verletzungen die Folge sein.

Einleitung

Art und Quelle der Gefahr

Mögliche Folge: Leichte oder geringfügige Verletzungen. Sachbeschädigung.

Maßnahme, die ergriffen werden muss, um diese Gefahr zu vermeiden.

Vorsicht!

 Bezeichnet eine möglicherweise gefährliche Situation. Wenn sie nicht gemieden wird, können leichte oder geringfügige Verletzungen die Folge sein. Darf auch für Warnung vor Sachschäden verwendet werden.

HINWEIS!

Art und Quelle der Gefahr

Schädigung des Produkts oder seiner Umgebung.

Maßnahme, die ergriffen werden muss, um diese Gefahr zu vermeiden.

Hinweis!

 Bezeichnet eine möglicherweise schädliche Situation. Wenn sie nicht gemieden wird, kann das Produkt oder etwas in seiner Umgebung beschädigt werden.

Anwendungstipps und Zusatzinformation.

Quelle der Information. Zusätzliche Maßnahmen.

Info!

 Bezeichnen Anwendungstipps und andere besonders nützliche Informationen. Es ist kein Signalwort für eine gefährliche oder schädliche Situation.

1.2 Benutzer Qualifikation

Verletzungsgefahr bei unzureichender Qualifikation des Personals! Der Betreiber der Anlage/des Gerätes ist für die Einhaltung der Qualifikationen verantwortlich.

Wenn unqualifiziertes Personal Arbeiten an dem Gerät vornimmt oder sich im Gefahrenbereich des Gerätes aufhält, entstehen Gefahren, die schwere Verletzungen und Sachschäden verursachen können.

- Alle Tätigkeiten nur durch dafür qualifiziertes Personal durchführen lassen
- Unqualifiziertes Personal von den Gefahrenbereichen fernhalten

Ausbildung	Definition
unterwiesene Person	Als unterwiesene Person gilt, wer über die übertragenen Auf- gaben und möglichen Gefahren bei unsachgemäßem Ver- halten unterrichtet und erforderlichenfalls angelernt, sowie über die notwendigen Schutzeinrichtungen und Schutzmaßnahmen belehrt wurde.
geschulter Anwender	Als geschulter Anwender gilt, wer die Anforderungen an eine unterwiesene Person erfüllt und zusätzlich eine anlagenspezifi- sche Schulung bei ProMinent oder einem autorisierten Ver- triebspartner erhalten hat.
ausgebildete Fach- kraft	Als Fachkraft gilt, wer aufgrund seiner Ausbildung, Kenntnisse und Erfahrungen sowie Kenntnis der einschlägigen Bestim- mungen die ihm übertragenen Arbeiten beurteilen und mög- liche Gefahren erkennen kann. Zur Beurteilung der fachlichen Ausbildung kann auch eine mehrjährige Tätigkeit auf dem betreffenden Arbeitsgebiet herangezogen werden.

Einleitung

Ausbildung	Definition
Elektrofachkraft	Die Elektrofachkraft ist aufgrund ihrer fachlichen Ausbildung, Kenntnisse und Erfahrungen sowie Kenntnis der einschlägigen Normen und Bestimmungen in der Lage, Arbeiten an elektri- schen Anlagen auszuführen und mögliche Gefahren selbst- ständig zu erkennen und zu vermeiden.
	Die Elektrofachkraft ist speziell für das Arbeitsumfeld, in dem sie tätig ist, ausgebildet und kennt die relevanten Normen und Bestimmungen.
	Die Elektrofachkraft muss die Bestimmungen der geltenden gesetzlichen Vorschriften zur Unfallverhütung erfüllen.
Kundendienst	Als Kundendienst gelten Servicetechniker, die von ProMinent für die Arbeiten an der Anlage nachweislich geschult und auto- risiert wurden.

Anmerkung für den Betreiber

Die einschlägigen Unfallverhütungsvorschriften sowie die sonstigen allgemein anerkannten sicherheitstechnischen Regeln einhalten!

1.3 Allgemeine Sicherheitshinweise

Spannungsführende Teile!

Mögliche Folge: Tod oder schwerste Verletzungen

- Maßnahme: Vor dem Öffnen des Gehäuses Netzstecker ziehen
- Beschädigte, defekte oder manipulierte Geräte durch das Ziehen des Netzsteckers spannungsfrei machen

Unbefugter Zugriff!

Mögliche Folge: Tod oder schwerste Verletzungen.

 Maßnahme: Sichern Sie das Gerät gegen unbefugten Zugriff

Bedienungsfehler!

Mögliche Folge: Tod oder schwerste Verletzungen.

- Das Gerät nur von genügend qualifizierten und sachkundigen Personal betreiben lassen
- Beachten Sie auch die Betriebsanleitungen der Regler und Einbauarmaturen und der anderen evtl. vorhandenen Baugruppen wie Sensoren, Messwasserpumpe ...
- Für die Qualifikation des Personals ist der Betreiber verantwortlich

Elektronische Störungen

Mögliche Folge: Sachbeschädigung bis hin zur Zerstörung des Gerätes

- Die Netzanschlussleitung und die Datenleitung dürfen nicht zusammen mit störbehafteten Leitungen verlegt werden
- Maßnahme: Entsprechende Entstörmaßnahmen treffen

HINWEIS!

Sachgerechte Verwendung

Schädigung des Produkts oder seiner Umgebung.

- Das Gerät ist nicht dazu bestimmt, gasförmige oder feste Medien zu messen oder zu regeln
- Das Gerät darf nur entsprechend der in dieser Betriebsanleitung und der Betriebsanleitungen der Einzelkomponenten aufgeführten technischen Daten und Spezifikationen verwendet werden

HINWEIS!

Einwandfreie Sensorfunktion / Einlaufzeit

Schädigung des Produkts oder seiner Umgebung

- Korrektes Messen und Dosieren ist nur bei einwandfreier Sensorfunktion möglich
- Einlaufzeiten der Sensoren sind unbedingt einzuhalten
- Die Einlaufzeiten sind bei der Planung der Inbetriebnahme einzukalkulieren
- Das Einlaufen des Sensors kann einen ganzen Arbeitstag in Anspruch nehmen
- Die Betriebsanleitung des Sensors ist zu beachten

HINWEIS!

Einwandfreie Sensorfunktion

Schädigung des Produkts oder seiner Umgebung.

- Korrektes Messen und Dosieren ist nur bei einwandfreier Sensorfunktion möglich
- Der Sensor ist regelmäßig zu prüfen und zu kalibrieren

HINWEIS!

Ausregeln von Regelabweichungen

Schädigung des Produkts oder seiner Umgebung

 In Regelkreisen, die ein schnelles Ausregeln erfordern (< 30 s), ist dieser Regler nicht einsetzbar

1.4 Bestimmungsgemäße Verwendung

HINWEIS!

Bestimmungsgemäße Verwendung

Das Gerät ist dazu bestimmt, flüssige Medien zu messen und zu regeln. Die Kennzeichnung der Messgröße befindet sich auf dem Regler und ist absolut verbindlich.

Das Gerät darf nur entsprechend der in dieser Betriebsanleitung und der Betriebsanleitungen der Einzelkomponenten (wie z.B. Sensoren, Einbauarmaturen, Kalibriergeräte, Dosierpumpen, etc.) aufgeführten technischen Daten und Spezifikationen verwendet werden.

Alle anderen Verwendungen oder ein Umbau sind verboten.

HINWEIS!

Ausregeln von Regelabweichungen

Schädigung des Produkts oder seiner Umgebung

 Der Regler ist einsetzbar in Prozessen, die ein Ausregeln > 30 Sekunden erfordern

1.5 ID-Code

Gerätekennzeichnung / Identcode

	DULCOMETER [®] Regler Baureihe D1Cb / D1Cc														
D10	D1Cb / D1Cc														
	Мо	ontageart													
	W	Wa	Wandmontage D1Cb (IP 65)												
	D	Schalttafelmontage D1Cc (IP54)													
		Ausführung													
		00 mit LCD und Tastatur / Mit Prominent Logo													
			Betriebsspannung												
			6	90.	25	3 V,	50/6	0 Hz	z (W	eitspannungsnetz	zteil)				
				Zul	assı	ung									
				0	CE	-Zula	assu	ing							
				1						- 1					
					на	rawa	areer	weit	erur	ig i					
					0	kei	ne								
						Ha	rdwa	areei	weit	erung II					
						0	kei	ne							
						1	RC	-Scł	nutzł	beschaltung für Le	eistu	ingsrelais			
							Ex	terne	ər Ar	nschluss					
							0	kei	ne						
								So	ftwa	re-Voreinstellung					
							U Grundeinstellung								
							V Software voreingestellt								
								Voreinstellung-Messgröße							
									0	Universal	I	Chlorit			
									A Peressigsäure P pH						

Einleitung

DULCOMETER [®] Regler Baureihe D1Cb / D1Cc									
E	З	Brom				R	Redox		
C	С	Chl	or			S	0/420 mA Normsignal allgemein		
C	D	Chl	ordio	oxid		Х	Gelöster Sauerstoff		
F	F Fluorid				Ζ	Ozon			
F	Н	Wass perox		Wasserstoff- peroxid			-	L	Leitfähigkeit
		Ans	schlu	iss d	ler N	less	größe		
		1 mA Eingang alle Messgr				ı (No ößer	ormsignal 0/4-20 mA, ı)		
		5 mV-Eingan			gang) (p⊦	I/Redox)		
		Korrekturgr			urgrö	öße			
			0	keir	ne				
		2 Temp Leitfä CDP)			nper tfähig P)	eratur Pt 100/PT1000 (für pH, higkeit, Fluorid, ClO ₂ Sensor			
			4	Ma pH, Ser	Ianuelle Temperatureingabe (für H, Leitfähigkeit, Fluorid, ClO ₂ ensor CDP)				
				Ste	uere	inga	ing		
				0	ohr	ne			
				1	Pau	ise			
		Sig			Sig	nala	usgang		
					0	ohr	e		
					1	Ana 0/4	alogsignalausgang 20 mA		
						Lei	stungsansteuerung		
						G	Alarm und 2 Grenz- wertrelais		

DULCOMETER [®] Regler Baureihe D1Cb / D1Cc							
	Μ	Ala ven	rm u ntil-R	ind 2 Magnet- elais			
		Pur	npei	nansteuerung			
		0	ohr	ne			
		2	2 P Imp	umpen über oulsfrequenz			
			Reg	gelverhalten			
			0	ohne			
			1	P-Regelung			
			2	PID-Regelung			

2 Funktionsbeschreibung

Kurzbeschreibung der Funktion

Der DULCOMETER[®] D1Cb / D1Cc 4-Leiter Messumformer/Regler ist ein Gerät, das zur Messung/Regelung einer Messgröße eingesetzt wird.

In der Messvariante mA kann die Messgröße im Menü des Gerätes ohne Einschränkungen umgeschaltet werden. In der Messvariante mV kann im Menü des DULCOMETER[®] D1Cb / D1Cc nur zwischen pH und Redox gewählt werden.

Je nach Messgröße können Sensoren für pH bzw. Redoxpotenzial oder amperometrische Sensoren mit den Messgrößen, laut \bigotimes *"Zuordnung der Messeingänge des DULCO-METER® D1Cb / D1Cc" Tabelle auf Seite 16*, angeschlossen werden. Als Korrekturgröße dient die Temperaturmessung, die mit einem Pt 100/1000 durchgeführt werden kann. Bei den Messgrößen pH-Wert, Leitfähigkeit und Fluorid ist damit eine automatische Temperaturkompensation möglich. Bei den amperometrischen Messgrößen (Chlor, usw) erfolgt die Temperaturkompensation im Sensor (Ausnahme Chlordioxid Sensor Typ CDP). Die Bedienung des DULCOMETER® D1Cb / D1Cc erfolgt über Menütasten. Die Anzeige erfolgt durch das beleuchtete LCD-Display. Das LCD-Display ermöglicht eine gute Ablesbarkeit des Messwertes, der Korrekturgröße, der Stellgröße und von Fehlermeldungen.

		Anschluss der	Messgröße an:
Merkmal	Messgröße	mV-Eingang	mA-Eingang
0	keine Voreinstellung		
	der Messgröße	Х	
	(pH und Redox wählbar)		
А	PES (Peressigsäure)		Х
В	Brom		Х
С	Chlor		Х
D	Chlordioxid		Х
F	Fluorid		Х
Н	H ₂ O ₂ (Wasserstoffperoxid)		Х
* mit Messw	rertumformer		

Zuordnung der Messeingänge des DULCOMETER® D1Cb / D1Cc

		Anschluss der	Messgröße an:
Merkmal	Messgröße	mV-Eingang	mA-Eingang
I	Chlorit		Х
Р	рН	Х	X*
R	Redox	Х	X*
S	0/420 mA Normsignal allgemein		Х
Х	O ₂		Х
Z	O ₃		Х
L	Leitfähigkeit		Х
* mit Maaau	contra una forma o n		

* mit Messwertumformer

Beschreibung der Klemmenanschlüsse für mA und mV: siehe Abb. 11 und Abb. 12

Beschreibung des Bedienmenüs der Messgrößen über mV Anschluss: siehe & Kapitel 8 "Messgrößen und Bedienmenüs für potentiometrische Sensoren" auf Seite 80

Beschreibung des Bedienmenüs der Messgrößen über mA Anschluss: siehe & Kapitel 7 "Messgrößen und Bedienmenüs für amperometrische Sensoren" auf Seite 69

Beschreibung des Bedienmenüs der Messgrößen über mA Normsignal: siehe *Kapitel 9 "Messgrößen und Bedienmenüs für das Normsignal allgemein" auf Seite 98*

2.1 Wandaufbau/Schalttafeleinbau

DULCOMETER® D1Cb

Der DULCOMETER[®] D1Cb ist sowohl für den Wandaufbau, als auch für den Schalttafeleinbau (mit zusätzlichem Montageset Schalttafeleinbau) geeignet.

Das Kunststoffgehäuse besteht aus dem Gehäuseober- und unterteil. Im Gehäuseoberteil befindet sich das LCD-Display und die Folientastatur.

Im Gehäuseunterteil befindet sich die Prozessor-, Netz- und gegebenenfalls die Optionsbaugruppe. Die Verbindung zum LCD-Display und Folientastatur erfolgt über ein Flachbandkabel. Der elektrische Anschluss erfolgt über ursprünglich geschlossene, ausbrechbare Kabeldurchführungen auf der Unterseite des Gehäuseunterteils.

Auf der Rückseite des Gehäuseunterteils befindet sich eine Wandhalterung für die Wandmontage.

DULCOMETER® D1Cc

Der DULCOMETER[®] D1Cc ist für den Schalttafeleinbau geeignet. Er erfüllt dabei die gleichen Funktionalitäten wie der D1Cb. Der D1Cc besitzt aber nicht die Möglichkeit eine RC-Schutzbeschaltung nachzurüsten. Bei korrekter Montage erfüllt der D1Cc IP54.

2.2 Elektrischer Aufbau

Das Gerät besitzt keinen Netzschalter. Nach dem Anschluss an das Stromnetz ist es sofort betriebsbereit.

Das Gerät verarbeitet ein Eingangssignal unter Berücksichtigung der Bedienereingaben. Das Ergebnis wird angezeigt und über ein Normsignal anderen Geräten zur Verfügung gestellt. Ausgerüstet mit Stellgliedern nimmt das Gerät Regelfunktionen wahr. Die Ansteuerung von Dosierpumpen, Magnetventilen sowie ein mA-Normsignalausgang sind vorgesehen. Die Größe dieser Ansteuerung wird jede Sekunde neu berechnet.

2.2.1 Blockschaltbild

HINWEIS!

Anschluß mV- oder mA-Sensor

Der DULCOMETER[®] D1Cb / D1Cc ist für den Anschluß von mV- oder mA-Sensoren geeignet. Der gleichzeitige Anschluß von mV- und mA-Sensoren ist nicht möglich.

Abb. 1: Blockschaltbild

2.2.2 Galvanische Trennung

WARNUNG!

Schutzkleinspannung/Netzspannung

Mögliche Folge: Tod oder schwerste Verletzungen.

Wenn Relais 1 oder 2 auf Schutzkleinspannung betrieben wird, darf an das andere Relais keine Netzspannung angeschlossen werden.

Abb. 2: Galvanische Trennung

- * Wenn Relais 1 oder 2 auf Schutzkleinspannung betrieben wird, darf an das andere Relais keine Netzspannung angeschlossen werden.
- ** keine galvanische Trennung zwischen mA- und mV-Eingang sowie Temperatureingang.

- Benutzer Qualifikation, mechanische Montage: ausgebildete Fachkraft, siehe & Kapitel 1.2 "Benutzer Qualifikation" auf Seite 9
- Benutzer Qualifikation, elektrische Installation: Elektrofachkraft, siehe & Kapitel 1.2 "Benutzer Qualifikation" auf Seite 9

HINWEIS!

Montageort und Bedingungen

- Auf eine leichte Zugänglichkeit f
 ür die Bedienung achten
- Sichere und vibrationsarme Befestigung
- Direkte Sonneneinstrahlung vermeiden
- Zulässige Umgebungstemperatur am Einbauort: 0 ... 50 °C bei max.
 95 % relative Luftfeuchtigkeit (nicht kondensierend)

HINWEIS!

Sachschäden an elektrostatisch empfindlichen Bauteilen

Bauteile können durch elektrostatische Spannungen beschädigt oder zerstört werden.

- Vor Arbeiten an elektrostatisch empfindlichen Bauteilen die Stromversorgung trennen.
- Bei Arbeiten an elektrostatisch empfindlichen Bauteilen ein geerdetes Antistatik-Gelenkband tragen.
- Bauteile immer an den Ecken halten und nie Leiterbahnen, ICs usw. berühren.
- Bauteile nur auf antistatischen Unterlagen bzw. der Originalverpackung platzieren.

Ablese- und Bedienposition

 Das Gerät in einer günstigen Ablese- und Bedienposition (möglichst in Augenhöhe) montieren

Montageposition

- Ausreichend Freiraum f
 ür die Kabel vorsehen
- Für die "Parkstellung" des Reglers, nach oben mindestens 120 mm Platz freihalten

3.1 Lieferumfang

Folgende Teile gehören zum Standardlieferumfang eines DULCOMETER[®] Reglers der Baureihe D1Cb.

Bezeichnung	Anzahl
Regler D1Cb	1
Halbverschraubung komplett (Set)	1
Verschraubung M12x1.5 komplett (Set)	1
Montagematerial komplett 3P Universal (Set)	1
Messgrößen-Etiketten D1C/ D2C	1
Bedienungsanleitung	1
Allgemeine Sicherheitshin- weise	1

3.2 Montage (Wandaufbau)

Das Gerät kann mit der Wandhalterung direkt an die Wand montiert werden.

Abb. 3: Befestigungsmaterial für den Wandaufbau

- 1. Halbrundkopfschrauben 5x45 (3 Stück) 2. Unterlegscheibe 5.3 (3 Stück)
- 3. Dübel d8 Kunststoff (3 Stück) 4. Wandhalterung
- **1.** Die Bohrungen mit Hilfe der Wandhalterung anzeichnen und bohren
- 2. Dübel eindrücken
- 3. >> Wandhalterung mit Unterlegscheiben und Halbrundkopfschrauben anschrauben
- **4.** Das Gerät von oben auf die Wandhalterung aufsetzen
- **5.** Das Gerät leicht gegen die Wandhalterung drücken und ca. 4 mm nach oben schieben bis es deutlich hörbar einrastet

3.3 Montage - Schalttafeleinbau (Option)

Maßabweichung

Mögliche Folge: Sachbeschädigung

- Durch das Fotokopieren der Stanzschablone können Maßabweichungen entstehen
- Die Abmessungen laut Abb. 4 verwenden und auf die Schalttafel aufzeichnen

Abb. 4: Zeichnung 3140-3 Stanzschablone / nicht maßstabsgerecht

Materialstärke Schalttafel

Mögliche Folge: Sachbeschädigung

 Zur sicheren Befestigung muss die Materialstärke der Schalttafel mindestens 2 mm betragen

Abb. 5: Zur sichern Befestigung muss die Materialstärke der Schalttafel mindestens 2 mm betragen

	M -			
3. PT-Schneideschraube verzinkt (6 Stück)	4. Sc	chalttafel		
1. Dichtschnur d3 Moosgummi (1 Sti	ück) 2. Ha	2. Haltebügel Stahl verzinkt (6 Stück)		

Teilenummer des Einbausatzes siehe & Tabelle auf Seite 147

- **1.** Mit den Bemassungen der Abb. 4 die exakte Lage des Gerätes auf der Schalttafel anzeichnen
- **2.** Die Ecken anreißen und bohren (Bohrdurchmesser 12 13 mm)
- 3. Mit Stanzwerkzeug oder Stichsäge die Aussparung laut der Zeichnung Stanzschablone anfertigen
- **4.** Schnittkanten entgraten und kontrollieren ob die Dichtflächen für die Dichtschur plan sind
 - ⇒ Andernfalls ist die Dichtfunktion nicht gewährleistet.
- 5. Dichtschnur in die umlaufende Nut des Gerätes gleichmäßig eindrücken
- **6.** Das Gerät in die Schalttafel einsetzen und von hinten mit den Haltebügeln und PT-Schneidschrauben befestigen
 - ⇒ Geräteüberstand nach vorne aus der Schalttafel ca. 35 mm

3.4 Installation D1Cb Wandaufbau (Elektrisch)

Elektrische Spannung

Mögliche Folge: Tod oder schwerste Verletzungen

- Der elektrische Anschluss des Gerätes darf erst nach der Montage an Wand oder Schalttafel erfolgen
- Vor dem Öffnen des Gerätes muss das Gerät elektrisch getrennt sein
- Ein unbeabsichtigtes Einschalten muss unmöglich sein

HINWEIS!

Öffnen des Gerätes

Schädigung des Produkts oder seiner Umgebung

- Das Gerät darf nur von qualifiziertem Personal geöffnet werden
- Das Gerät sollte nur im wandoder schalttafelmontiertem Zustand geöffnet werden

3.4.1 Öffnen des Gerätes

Abb. 6: Öffnen des Gerätes

- 1. Die 4 verliersicheren Senkschrauben lösen (1)
- 2. Oberteil des Gerätes von Unterteil abheben (2). Bei Bedarf mit breiten Schlitzschraubendreher nachhelfen
- 3. Oberteil mit den beiden Führungsschienen in das Unterteil einsetzen (3 und 4) (Parkposition)

3.4.2 Installation elektrisch bei Wandaufbau

HINWEIS!

Gewindebohrungen

Gewindebohrungen entsprechend der Anzahl der Kabel, mit geeigneten Werkzeug (\emptyset ca. 4 mm), ausbrechen.

 Zum Ausbrechen der Gewindebohrungen sind Ausbrech-Hilfen vorgesehen

Abb. 7: Ausbrechen der Gewindebohrungen

1. Verschraubung M20x1,5	2. Druckring M20
3. Dichtring M20	4. Blindscheibe M20

- **1.** Kabelummantelung in ausreichender Länge entfernen
- 2. Verschraubung (1), Druckring (2) und Dichtring (3) auf Kabel schieben
- **3.** Kabel mit Anbauteilen in die Gewindebohrung einschieben
- **4.** Kabel ausrichten und soweit einschieben, dass ausreichend Kabel im Reglergehäuse ist
- 5. Verschraubung anschrauben und anziehen
- 6. Kabeladern auf die exakte Gesamtlänge kürzen und ca. 8 mm abisolieren
- **7.** ► Kabeladern mit Aderendhülsen versehen. Siehe & *auf Seite 31*
- 8. Kabeladern entsprechend dem elektrischen Klemmenplan Abb. 11 an die Klemmen anschließen

Ausgebrochene Gewindebohrungen können mit den Blindscheiben M20 (4) wieder verschlossen werden.

Für die 4 Durchbrüche der vorderen Reihe werden die beiliegenden Verschraubungen M12x1,5 und die Messing-Kontermuttern verwendet.

Abb. 8: M12x1,5 Verschraubungen

5. Verschraubung	6. Kontermutter
M12x1,5	M12x1,5

- **1.** Kontermutter M12x1,5 (6) innen einlegen
- 2. Verschraubung M12x1,5 (5) von außen montieren und anziehen

3.4.3 Installation elektrisch bei Schalttafelmontage

Die Vorgehensweise entspricht der "Installation elektrisch bei Wandmontage". Siehe & Kapitel 3.4.2 "Installation elektrisch bei Wandaufbau" auf Seite 28

Bei einem Schalttafeleinbau sollte nur die hintere Reihe der Gewindebohrungen (M20x1,5) verwendet werden. Die vordere Reihe (M12x1,5) befindet sich außerhalb der Schalttafel.

Der Anschluss erfolgt laut elektrischen Klemmenplan. Siehe *♦ Kapitel 3.4.7 "Klemmenplan " auf Seite 33*

3.4.4 Installation Koaxialkabel an Schirmklemme XE1

Maximale Länge des Koaxialkabels 10 m

Verfälschter Messwert durch zu langes Koaxialkabel

Mögliche Folge: Leichte oder geringfügige Verletzungen. Sachbeschädigung.

Bei der Verwendung von Sensoren Redox oder pH darf die maximale Länge des Koaxialkabels 10 m nicht überschreiten. Das Messsignal kann sonst durch Störeinflüsse verfälscht werden.

Wenn der Abstand zwischen pH/Redox Messstelle und DULCOMETER[®] D1Cb mehr als 10 Meter beträgt, so wird die Verwendung eines zwischengeschalteten DULCOTEST[®] Messumformer 4-20 mA pH V1, rH V1 empfohlen. Dann erfolgt der Anschluss über Klemme XE4 des DULCOMETER[®] D1Cb

Die Klemme XE4 (mA-Eingang) ist eine kostenpflichtige Zusatzfunktion!

Bei der Installation des Koaxialkabels für die Schirmklemme XE 1, sind die in der Grafik Abb. 9 gezeigten Abmaße für das Abisolieren des Koaxialkabels einzuhalten. Die Schirmklemme wird "handfest" angezogen.

Abb. 9: Konfektionierung Koaxialkabel

3.4.5 Leiterquerschnitte und Aderendhülsen

	minimaler Quer- schnitt	maximaler Quer- schnitt	Abisolierlänge
ohne Aderendhülse	0,25 mm ²	1,5 mm ²	
Aderendhülse ohne Isolation	0,20 mm ²	1,0 mm ²	8 - 9 mm
Aderendhülse mit Isolation	0,20 mm ²	1,0 mm ²	10 - 11 mm

3.4.6 RC-Schutzbeschaltung (Option)

Im Betrieb mit Verbrauchern, die eine induktive Last darstellen (z.B. Motordosierpumpen oder Magnetdosierpumpen), wird die RC-Schutzbeschaltung empfohlen. Die RC-Schutzbeschaltung verringert in diesem Anwendungsfall den Verschleiß der Relaiskontakte. Siehe ₲ *"Ersatzteile und Zubehör DULCO-METER® D1Cb" auf Seite 146*

3.4.7 Klemmenplan

Abb. 10: Klemmenanordnung

Abb. 11: Klemmenplan mit Belegungsvarianten 1

Abb. 12: Klemmenplan mit Belegungsvarianten 2

Abb. 13: Klemmenplan RC-Schutzbeschaltung
3.5 Das Schalten von induktiven Lasten

Wenn Sie an ein Relais Ihres Reglers eine induktive Last, also einen Verbraucher der eine Spule (z.B. Motorpumpe alpha) verwendet, anschließen, dann müssen Sie Ihren Regler mit einer Schutzbeschaltung absichern. Fragen Sie im Zweifelsfall eine Elektrofachkraft um Rat.

Die Schutzbeschaltung mittels RC-Glied ist eine einfache, aber dennoch sehr wirksame Schaltung. Diese Schaltung wird auch als Snubber oder als Boucherot-Glied bezeichnet. Sie wird überwiegend zum Schutz von Schaltkontakten verwendet.

Die Reihenschaltung von Widerstand und Kondensator bewirkt beim Abschaltvorgang, dass der Strom in einer gedämpften Schwingung ausklingen kann.

Beim Einschaltvorgang dient der Widerstand außerdem als Strombegrenzung für den Ladevorgang des Kondensators. Die Schutzbeschaltung mittels RC-Glied ist sehr gut geeignet für Wechselspannung.

Der Widerstand R des RC-Gliedes wird dabei entsprechend der folgenden Formel dimensioniert:

Einheiten: R = Ohm; U = Volt; I_L = Ampere; C = μ F

R=U/I_L

(U= Spannung über der Last // I_L = Laststrom)

Die Größe des Kondensators lässt sich mit folgender Formel ermitteln:

C=k * IL

k=0,1...2 (applikationsabhängig).

Nur Kondensator der Klasse X2 verwenden.

Einheiten: R = Ohm; U = Volt; I_{L} = Ampere; C = μ F

Werden Verbraucher geschaltet, die einen erhöhten Einschaltstrom haben (z.B. Steckerschaltnetzteile), dann muss eine Begrenzung des Einschaltstroms vorgesehen werden.

Der Abschaltvorgang lässt sich mittels eines Oszillogramms ermitteln und dokumentieren. Die Spannungsspitze am Schaltkontakt ist abhängig von der gewählten RC-Kombination.

Abb. 14: Abschaltvorgang im Oszillogramm

Montage D1Cb

Netzspannung

Mögliche Folge: Tod oder schwerste Verletzungen

Falls an eine der Klemmen XR1-XR3 oder XP Netzspannung angeschlossen wird, darf an keiner anderen dieser Klemmen Schutzkleinspannung liegen (SELV).

Abb. 15: RC-Schutzbeschaltung für die Relaiskontakte

Typische Wechselstrom-Anwendungen bei induktiver Last:

- 1) Last (z.B. Motorpumpe alpha)
- 2) RC-Schutzbeschaltung
 - Beispielhafte RC-Schutzbeschaltung bei 230 V AC:
 - Kondensator [0,22µF/X2]
 - Widerstand [100 Ohm / 1 W] (Metalloxid (impulsfest))
- 3) Relais Kontakt (XR1, XR2, XR3)

4 Montage D1Cc

- Benutzer Qualifikation, mechanische Montage: ausgebildete Fachkraft, siehe & Kapitel 1.2 "Benutzer Qualifikation" auf Seite 9
- Benutzer Qualifikation, elektrische Installation: Elektrofachkraft, siehe & Kapitel 1.2 "Benutzer Qualifikation" auf Seite 9

HINWEIS!

Montageort und Bedingungen

- Auf eine leichte Zugänglichkeit f
 ür die Bedienung achten
- Sichere und vibrationsarme Befestigung
- Direkte Sonneneinstrahlung vermeiden
- Zulässige Umgebungstemperatur am Einbauort: 0 ... 50 °C bei max.
 95 % relative Luftfeuchtigkeit (nicht kondensierend)

HINWEIS!

Sachschäden an elektrostatisch empfindlichen Bauteilen

Bauteile können durch elektrostatische Spannungen beschädigt oder zerstört werden.

- Vor Arbeiten an elektrostatisch empfindlichen Bauteilen die Stromversorgung trennen.
- Bei Arbeiten an elektrostatisch empfindlichen Bauteilen ein geerdetes Antistatik-Gelenkband tragen.
- Bauteile immer an den Ecken halten und nie Leiterbahnen, ICs usw. berühren.
- Bauteile nur auf antistatischen Unterlagen bzw. der Originalverpackung platzieren.

Ablese- und Bedienposition

 Das Gerät in einer günstigen Ablese- und Bedienposition (möglichst in Augenhöhe) montieren

Montageposition

Ausreichend Freiraum für die Kabel vorsehen

4.1 Lieferumfang DULCOMETER® D1Cc

Folgende Teile gehören zum Standardlieferumfang eines DULCOMETER[®] Reglers der Baureihe D1Cc.

Bezeichnung	Anzahl
Regler D1Cc	1
Haltebügel	4
Messgrößen-Etiketten D1C/D2C	1
Bedienungsanleitung	1
Allgemeine Sicherheitshinweise	1

4.2 Montage - Schalttafeleinbau DULCOMETER® D1Cc

Maßabweichung

Mögliche Folge: Sachbeschädigung

- Durch das Fotokopieren der Stanzschablone können Maßabweichungen entstehen
- Die Abmessungen laut Abb. 16 verwenden und auf die Schalttafel aufzeichnen

Materialstärke Schalttafel

Mögliche Folge: Sachbeschädigung

 Zur sicheren Befestigung muss die Materialstärke der Schalttafel mindestens 2 mm betragen Das Gerät ist zum Einbau in eine Schalttafel konstruiert. Das Gehäuse entspricht der DIN 43700. Die Schalttafelaussparung zum Einbau des Gerätes ist in der DIN 43700 festgelegt. Wir empfehlen eine kleinere Aussparung. Das Gerät ist dann besser fixiert (weniger seitliches Spiel) und die Dichtung wird gleichmäßig verpresst.

Abb. 16: Montage - Schalttafeleinbau DULCOMETER® D1Cc

- I. Vorschrift DIN 43700
- II. Empfehlung ProMinent

Aussparung anfertigen:

Abb. 17: Gewindebolzen nach vorne schrauben

Als Montagehilfe ist dem Gerät eine Bohr-Stanzschablone im Maßstab 1:1 beigelegt. Hiermit lässt sich die Lage des Gerätes auf der Schalttafel optimal positionieren.

- **1.** Die Bohr-Stanzschablone an entsprechender Position an der Schalttafel mit Hilfe einer Wasserwaage ausrichten und befestigen
- **2.** Die Eckpunkte mit einem Körner markieren und mit einem Bohrer Ø 6 mm aufbohren
- 3. Anschließend die Zwischenstege mit einer Stichsage aussägen
- **4.** Die Flächen sauber nacharbeiten, bis das Maß innerhalb der angegebenen Toleranzen hergestellt ist.
- 5. Die Kanten anschließend sauber entgraten
- **6.** Vor dem Einsetzen des Gerätes in die Schalttafel-Aussparung die Lage der Dichtung überprüfen (muss am vorderen Bund anliegen)

Schutzart IP54

- **7.** Das Gerät von außen in die Aussparung einsetzen, die Haltebügel anbringen und nach hinten bis zum Anschlag schieben
 - ⇒ Es müssen alle vier Haltebügel angebracht werden, da sonst die Schutzart IP54 nicht eingehalten werden kann.
- 8. Mit einem geeigneten Schraubendreher die Gewindebolzen, siehe Abb. 17, nach vorne schrauben, bis die Dichtung vollständig und gleichmäßig verpresst wird
- **9.** Den korrekte Sitz der Dichtung nochmals überprüfen, ggf. die Gewindebolzen lösen und die Lage korrigieren

4.3 Installation elektrisch bei Schalttafelmontage

Der Anschluss erfolgt laut elektrischen Klemmenplan. Siehe & *Kapitel 4.3.3 "Klemmenplan" auf Seite 47*

4.3.1 Installation Koaxialkabel an Schirmklemme XE1

Maximale Länge des Koaxialkabels 10 m

Verfälschter Messwert durch zu langes Koaxialkabel

Mögliche Folge: Leichte oder geringfügige Verletzungen. Sachbeschädigung.

Bei der Verwendung von Sensoren Redox oder pH darf die maximale Länge des Koaxialkabels 10 m nicht überschreiten. Das Messsignal kann sonst durch Störeinflüsse verfälscht werden.

Wenn der Abstand zwischen pH/Redox Messstelle und DULCOMETER[®] D1Cc mehr als 10 Meter beträgt, so wird die Verwendung eines zwischengeschalteten DULCOTEST[®] Messumformer 4-20 mA pH V1, rH V1 empfohlen. Dann erfolgt der Anschluss über Klemme XE4 des DULCOMETER[®] D1Cc

Die Klemme XE4 (mA-Eingang) ist eine kostenpflichtige Zusatzfunktion.

Bei der Installation des Koaxialkabels für die Schirmklemme XE 1, sind die in der Grafik Abb. 18 gezeigten Abmaße für das Abisolieren des Koaxialkabels einzuhalten. Die Schirmklemme wird "handfest" angezogen.

Abb. 18: Konfektionierung Koaxialkabel

4.3.2 Leiterquerschnitte und Aderendhülsen

	minimaler Quer- schnitt	maximaler Quer- schnitt	Abisolierlänge
ohne Aderendhülse	0,25 mm ²	1,5 mm ²	
Aderendhülse ohne Isolation	0,20 mm ²	1,0 mm ²	8 - 9 mm
Aderendhülse mit Isolation	0,20 mm ²	1,0 mm ²	10 - 11 mm

4.3.3 Klemmenplan

Abb. 19: Klemmenplan mit Belegungsvarianten 1

Montage D1Cc

Abb. 20: Klemmenplan mit Belegungsvarianten 2

4.4 Das Schalten von induktiven Lasten

Wenn Sie an ein Relais Ihres Reglers eine induktive Last, also einen Verbraucher der eine Spule (z.B. Motorpumpe alpha) verwendet, anschließen, dann müssen Sie Ihren Regler mit einer Schutzbeschaltung absichern. Fragen Sie im Zweifelsfall eine Elektrofachkraft um Rat.

Die Schutzbeschaltung mittels RC-Glied ist eine einfache, aber dennoch sehr wirksame Schaltung. Diese Schaltung wird auch als Snubber oder als Boucherot-Glied bezeichnet. Sie wird überwiegend zum Schutz von Schaltkontakten verwendet.

Die Reihenschaltung von Widerstand und Kondensator bewirkt beim Abschaltvorgang, dass der Strom in einer gedämpften Schwingung ausklingen kann.

Beim Einschaltvorgang dient der Widerstand außerdem als Strombegrenzung für den Ladevorgang des Kondensators. Die Schutzbeschaltung mittels RC-Glied ist sehr gut geeignet für Wechselspannung.

Der Widerstand R des RC-Gliedes wird dabei entsprechend der folgenden Formel dimensioniert:

Einheiten: R = Ohm; U = Volt; I_L = Ampere; C = μ F

R=U/I_L

(U= Spannung über der Last // I_L = Laststrom)

Die Größe des Kondensators lässt sich mit folgender Formel ermitteln:

C=k * IL

k=0,1...2 (applikationsabhängig).

Nur Kondensator der Klasse X2 verwenden.

Einheiten: R = Ohm; U = Volt; I_{L} = Ampere; C = μ F

Werden Verbraucher geschaltet, die einen erhöhten Einschaltstrom haben (z.B. Steckerschaltnetzteile), dann muss eine Begrenzung des Einschaltstroms vorgesehen werden.

Der Abschaltvorgang lässt sich mittels eines Oszillogramms ermitteln und dokumentieren. Die Spannungsspitze am Schaltkontakt ist abhängig von der gewählten RC-Kombination.

Abb. 21: Abschaltvorgang im Oszillogramm

Montage D1Cc

Netzspannung

Mögliche Folge: Tod oder schwerste Verletzungen

Falls an eine der Klemmen XR1-XR3 oder XP Netzspannung angeschlossen wird, darf an keiner anderen dieser Klemmen Schutzkleinspannung liegen (SELV).

Abb. 22: RC-Schutzbeschaltung für die Relaiskontakte

Typische Wechselstrom-Anwendungen bei induktiver Last:

- 1) Last (z.B. Motorpumpe alpha)
- 2) RC-Schutzbeschaltung
 - Beispielhafte RC-Schutzbeschaltung bei 230 V AC:
 - Kondensator [0,22µF/X2]
 - Widerstand [100 Ohm / 1 W] (Metalloxid (impulsfest))
- 3) Relais Kontakt (XR1, XR2, XR3)

5 Inbetriebnahme

Benutzer Qualifikation: geschulter Anwender

Einlaufzeiten der Sensoren

Es kann zu gefährlichen Fehldosierungen kommen

Einlaufzeiten bei der Inbetriebnahme berücksichtigen

- Korrektes Messen und Dosieren ist nur bei einwandfreier Sensorfunktion möglich
- Einlaufzeiten der Sensoren sind unbedingt einzuhalten
- Die Einlaufzeiten sind bei der Planung der Inbetriebnahme einzukalkulieren
- Das Einlaufen des Sensors kann einen ganzen Arbeitstag in Anspruch nehmen
- Die Betriebsanleitung des Sensors ist zu beachten

Nach erfolgter mechanischer und elektrischer Montage ist der Regler in die Messstelle zu integrieren.

5.1 Erstinbetriebnahme

Bei der Erstinbetriebnahme zeigt das Gerät in der Spracheinstellung "Englisch" an. Auf dem Display erscheint "language english". Ausnahme: Die Sprache ist ab Werk auf Kundenwunsch voreingestellt.

Startmenü bei Erstinbetrieb-

nahme

Das Menü "Spracheinstellung bei Erstinbetriebnahme" erscheint nur ein einziges mal.

Spätere Umstellungen der Bediensprache werden dann im Menüpunkt "Allg. Einstellung/Informationen" durchgeführt.

Abb. 23: Display Erstinbetriebnahme

Im Anschluss erfolgt die Auswahl der Messgröße und des Messbereiches im Menüpunkt "Allg. Einstellung/Informationen".

5.1.1 Auswahl der Bedienersprache

Bei Geräten die nicht auf Kundenanforderung vorkonfiguriert sind, muss die gewünschte Bedienersprache im Bedienmenü "Allgemeine Einstellungen / Bedienmenü /" ausgewählt werden. Siehe & Kapitel 10.7 "Allgemeine Einstellungen" auf Seite 127

HINWEIS!

Bedienersprache zurücksetzen

Für den Fall, dass eine fremde und somit unverständliche Bedienersprache eingestellt wurde, so kann man den DULCOMETER® D1Cb / D1Cc in die Grundeinstellung "Englisch" zurücksetzen.

Befindet man sich in der Daueranzeige 1, so kann man durch das gleichzeitige Drücken der Tasten ⓒ, ⓒ, ⓓ den DULCOMETER[®] D1Cb / D1Cc dazu veranlassen die Bedienersprache erneut abzufragen. Siehe জ *Kapitel 6.3 "Daueranzeige 1" auf Seite 60*

Sollte man nicht mehr wissen, wo im Bedienermenü man sich befindet, weil man die fremde Bedienersprache nicht lesen kann, so muss man 10x die Taste D betätigen. Dann befindet man sich auf jeden Fall in der Daueranzeige 1.

5.1.2 Auswahl der Messgröße und des Messbereiches

Fehldosierung durch falschen Messbereich

Mögliche Folge: Tod oder Verletzungen.

- Maßgeblich für den Messbereich, ist der Messbereich des Sensors!
- Bei Änderung der Messbereichszuordnung müssen in allen Menüs die Einstellungen überprüft werden
- Bei Änderung der Messbereichszuordnung muss der Sensor neu kalibriert werden

Bei Geräten die nicht auf Kundenanforderung vorkonfiguriert sind, muss die gewünschte Messgröße im vollständigen Bedienmenü "Allgemeine Einstellungen / Messgröße ändern/" ausgewählt werden. Der DULCOMETER® D1Cb / D1Cc ist anschließend mit dem entsprechenden Etikett für die Messgröße zu kennzeichnen. Entsprechende Etiketten liegen dem DULCOMETER® D1Cb / D1Cc bei.

Abb. 24: Auswahl Messgröße und Messbereich

Der gewünschte Messbereich muss im vollständigen Bedienmenü Allgemeine Einstellungen / Messgröße ändern, siehe & *Kapitel 10.7.1 "Messgröße/ Messbereich einstellen" auf Seite 128*, ausgewählt und eingestellt werden.

5.2 Freischaltcode für Funktionserweiterungen

Freischaltcode

Der Zugriff auf weitere Funktionen kann über einen Freischaltcode optional erworben werden.

Sollten Sie für diese weiteren Funktionen ergänzende Bedienunterlagen benötigen, so stehen Ihnen diese auf der Homepage der ProMinent Dosiertechnik, Heidelberg, zur Verfügung.

Abb. 25: Freischaltcode / Seriennummer

Die Eingabe des Freischaltcodes erfolgt jeweils pro Stelle über die 🙆 und 🐼 Taste. Weiter auf die nächste Stelle mit der 🔯 Taste.

ĥ

Die neu freigeschalteten Funktionen müssen in dem entsprechenden Menü konfiguriert, parametriert bzw. neue Messgrößen kalibriert werden. Informationen hierzu finden Sie im jeweiligen vollständigem Bedienmenü.

5.2.1 Funktionserweiterung über Freischaltcode

Funktionserweiterung

Der DULCOMETER[®] D1Cb / D1Cc Regler kann durch einen 16-stelligen Freischaltcode in seiner Funktionalität erweitert oder verändert werden. Ein Freischalten von Funktionen ist mehrfach möglich.

ິ **/**

D1Cb / D1Cc Software-Upgrade

Für die Ermittlung des Freischaltcodes benötigt ProMinent die 10-stellige Seriennummer (Srnr), sowie den gewünschten Software-Upgrade Identcode, der sich jeweils aus der unten stehenden Tabelle ergibt.

HINWEIS!

Freischaltcode

Bei der Bestellung des Freischaltcodes muss unbedingt darauf geachtet werden, dass die Seriennummer (Srnr) exakt mit der des zu erweiternden DULCOMETER® D1Cb / D1Cc übereinstimmt. Andernfalls wird ein nicht funktionierender, aber kostenpflichtiger, Freischaltcode ermittelt.

HINWEIS!

Meldung "Falscher Code"

Wurde der Code falsch eingegeben, dann erscheint die Meldung "Falscher Code". Sie können die Eingabe des Freischaltcodes beliebig oft wiederholen. Führt dies dennoch nicht zum Erfolg, dann überprüfen Sie die Seriennummer des Reglers.

Inbetriebnahme

DULC	DULCOMETER [®] D1Cb / D1Cc Software-Upgrade					
D1U b	Software Voreinstellung					
V	Software voreingestellt					
	Vorein	stellung	g - Mess	größe		
	0	Univer	sal			
	А	Peres	sigsäure			
	В	Brom				
	С	Chlor				
	D	Chloro	lioxid			
	F	Fluorio	ł			
	Н	Wasse	erstoffpe	eroxid		
	I.	Chlorit	Chlorit			
	Ρ	рН	рН			
	R	Redox				
	S	0/4-20 mA Normsignal allgemein				
	Х	Sauer	stoff			
	Z	Ozon				
	L	Leitfäh	nigkeit			
		Ansch	luss dei	- Messgröße		
		1*	Norms	ignal 0/4-20 mA, alle Messgrößen		
		5	mV-Eingang für pH/Redox über Schirmklemme			
			Korrekturgröße			
			0 keine			
			2*	Temperatur Pt100/PT1000 (für pH und Leitfähigkeit)		
			4*	Manuelle Temperatureingabe (für pH und Leitfähigkeit)		
* = kos	stenpflic	htige O	ption			

DULCOMETER [®] D1Cb / D1Cc Software-Upgrade										
				Steuereingang						
				0) ohne					
				1*	Pause					
					Signal	ausgan	g			
					0	ohne				
					1*	Analog	gsignala	lusgang	0/4-20	mA
						Leistur	ngsanst	euerun	g	
						G	Alarm	und 2 G	Grenzwe	ertrelais
						M*	Alarm	und 2 N	lagnetv	entil-Relais
							Pumpe	enanste	uerung	
							0	ohne		
							2*	2 Pumpen über Impuls quenz		er Impulsfre-
								Regel	/erhalte	n
								0	keine	
								1*	P-Reg	elung
						2*	PID-Regelung			
									Sprach	ne
									00	keine Vor- einstellung

* = kostenpflichtige Option

6 Bedienschema/Symbole Display

6.1 Geräteübersicht / Bedienelemente

Abb. 26: Geräteübersicht / Bedienelemente

Funktion	Beschreibung
1. jeweilige Messgröße	Hier das Messgrößen-Etikett aufkleben.
2. Display	
3. START/STOP-Taste	Start/Stop der Regel- und Dosierfunktion
4. EINGABE-Taste	Zur Übernahme, Bestätigung oder Speicherung eines angezeigten Wertes oder Zustandes. Zur Alarmquittierung

Funktion	Beschreibung
5. AUF-Taste	Zum Erhöhen eines angezeigten Zahlenwertes und zum Verändern der Variablen (blinkende Anzeige). Zum Springen im Bedienmenü nach oben.
6. AB-Taste	Zum Verringern eines angezeigten Zahlenwertes und zum Verändern der Variablen (blinkende Anzeige). Zum Springen im Bedienmenü nach unten.
7. RÜCKSPRUNG TASTE	Zurück zur Daueranzeige oder zum Beginn des jeweiligen Einstellmenüs
8. WECHSEL-Taste	Zum Wechseln innerhalb einer Menüebene und zum Wechseln von einer veränderbaren Größe zur anderen veränderbaren Größe innerhalb eines Menüpunktes. Bei Eingabe von Zahlenwerten springt der Cursor eine Stelle weiter

6.2 Symbole der Display-Anzeige

Die Display-Anzeige des DULCOMETER® D1Cb / D1Cc verwendet folgende Symbole:

Bedeutung	Kommentar	Symbol
Grenzwertverletzung Relais 1 oben	Symbol links	1
Grenzwertverletzung Relais 1 unten	Symbol links	ŀ
Grenzwertverletzung Relais 2 oben	Symbol rechts	1
Grenzwertverletzung Relais 2 unten	Symbol rechts	ŀ
Dosierpumpe 1 Ansteuerung aus	Symbol links	I
Dosierpumpe 1 Ansteuerung ein	Symbol links	0
Dosierpumpe 2 Ansteuerung aus	Symbol rechts	I
Dosierpumpe 2 Ansteuerung ein	Symbol rechts	0
Magnetventil 1 Ansteuerung aus	Symbol links	
Magnetventil 1 Ansteuerung ein	Symbol links	Δ

Bedienschema/Symbole Display

Bedeutung	Kommentar	Symbol
Magnetventil 2 Ansteuerung aus	Symbol rechts	
Magnetventil 2 Ansteuerung ein	Symbol rechts	$\$
Stop-Taste gedrückt		0
Manuelle Dosierung		Μ
Fehler		5
Messwert steigt sehr schnell	Tendenz der Messwertanzeige	t
Messwert steigt schnell	Tendenz der Messwertanzeige	Î
Messwert steigt langsam	Tendenz der Messwertanzeige	Û
Messwert fällt sehr schnell	Tendenz der Messwertanzeige	t
Messwert fällt schnell	Tendenz der Messwertanzeige	1
Messwert fällt langsam	Tendenz der Messwertanzeige	Û
Messwert stabil	Tendenz der Messwertanzeige	1

6.3 Daueranzeige 1

Abb. 27: Daueranzeige 1

1. Messwert

2. Maßeinheit (hier als Beispiel "ppm")

Es sind nicht immer alle Symbole der Daueranzeige 1 gleichzeitig sichtbar. Der Umfang ergibt sich aus dem Bedarf.

- 3. Status der Stellglieder
- 4. Tendenzanzeige Messwert fallend/steigend
- 5. Messgröße (hier als Beispiel "Chlor")
- 6. Statuszeile

Es sind nicht immer alle Symbole der Daueranzeige 1 gleichzeitig sichtbar. Der Umfang ergibt sich aus dem Bedarf.

6.4 Daueranzeige 2

Abb. 28: Daueranzeige 2

Die Daueranzeige 2 zeigt alle zur Zeit benötigten Information des Reglers DULCOMETER[®] D1Cb / D1Cc an. Der Wechsel in andere Displays erfolgt mit der Taste 💿 oder 🕥 oder 🛐.

6.5 Daueranzeige 3

Abb. 29: Daueranzeige 3

- 1. Aktueller Messwert im Klartext
- 2. Bargraph-Anzeige zeigt den aktuellen Messwert im Verhältnis zur unteren und oberen Messwertgrenze
- 3. Stellt die untere und obere Anzeigegrenze dar

Der Wechsel in andere Displays erfolgt mit der Taste 💿 oder 🕥 oder 🛐.

Um den unteren und oberen Wert (3) einzustellen Taste (3) betätigen. Der linke Wert blinkt und kann über die Taste (3) oder (3) eingestellt werden. Bestätigung der Eingabe mit Taste (3). Der Wechsel zwischen dem linken und rechten Wert (3) erfolgt ebenfalls mit Taste (3).

Mit dieser Einstellung kann man den Anzeigebereich des Bargraph z.B. auf einen kleinen Bereich "zoomen" um eine besser aufgelöste Anzeige im Hauptanzeigebereich der Messung zu erhalten.

ĵ

Mit dieser Einstellung wird nur der Anzeigebereich des Bargraph verändert! Eine Änderung des Messbereichs des DULCOMETER[®] D1Cb / D1Cc ist mit dieser Funktion nicht möglich.

6.6 Bedienschema

Zugangscode

- Der Zugang zu den Einstellmenüs kann mit einem Zugangscode verriegelt werden
- Ist bei einem Einstellmenü der Zugangscode korrekt gewählt, dann sind alle anderen Einstellmenüs ebenfalls zugänglich

Grundsätzlich sind die Daueranzeigen 1 - 3 und das Kalibriermenü frei zugänglich. Alle anderen Menü können über den Zugangscode so verriegelt werden, dass die eingestellten Werte angezeigt werden, aber nicht geändert werden können. Als Defaultwert ist 5000 als Zugangscode eingegeben.

 Wird innerhalb von 60 Sekunden kein Taste gedrückt, springt das Gerät wieder in die Daueranzeige 1 und der Zugangscode ist wieder aktiv und der Zugriff eingeschränkt

Abb. 30: Zugangscode

Anzahl und Umfang der Einstellmenüs ist von der Ausführung des Gerätes abhängig.

So können Sie Zahlenwerte einstellen und verändern

Abb. 31: Einstellbare Werte blinken

1. Einstellbare Werte blinken

Mit den Tasten 💿 und 🙆 können Sie die Werte senken oder anheben.

Wechseln können Sie zwischen den einstellbaren Werten mit der S-Taste.

- 1. Der Sollwert (z.B. 7.20 pH) blinkt
- 2. Betätigen Sie die 🖸 oder 🔯-Taste einmal
 - ⇒ Nun blinkt die erste Stelle des Zahlenwertes.
- 3. Mit der S-Taste können Sie auf die Stelle vorrücken, die Sie verändern wollen

Sie können durch mehrmaliges Drücken der ③-Taste wieder an die erste Stelle des einzustellenden Zahlenwertes kommen.

4. Mit den 💿 und 📴-Tasten können Sie die Zahlenwert senken oder anheben

⇒ Mit der [②-Taste wird können Sie nun den gesamten geänderten Zahlenwert speichern.

5. Durch nochmaliges Drücken S-Taste gelangen Sie in den nächsten Menüpunkt

6.7 Bedienmenü eingeschränkt / vollständig

Der DULCOMETER[®] D1Cb / D1Cc gestattet Einstellungen in zwei unterschiedlich umfangreichen Menüs (eingeschränkt / vollständig). Alle Parameter des Reglers sind voreingestellt und können im vollständigem Bedienmenü verändert werden.

Ausgeliefert wird der Regler mit eingeschränktem Bedienmenü. Sollten Anpassungen notwendig sein, können durch Umschalten auf das vollständige Bedienmenü alle Parameter geändert werden.

Abb. 32: Umschalten eingeschränkt / vollständig

6.8 Fehlermeldungen

Auftretende Fehlermeldungen und Hinweise werden in der Daueranzeige 1 in der unteren Zeile angegeben. Zu quittierende Fehler (Quittieren schaltet das Alarm-Relais ab) werden durch das Symbol & gekennzeichnet.

Fehler/Hinweise, die nach dem Quittieren weiterbestehen, werden im Wechsel angezeigt. Wenn eine Korrekturgrößen-Verarbeitung vorliegt, dann wird der Wert in der gleichen Zeile wie die Fehler/Hinweise angegeben. Fehler, die durch sich verändernde Betriebssituationen selbsttätig behoben sind, werden ohne Quittieren aus der Daueranzeige 1 entfernt.

6.8.1 Fehleranzeige

Abb. 33: Fehleranzeige

1. Stop-Funktion

2. Fehler

3. Fehler im Klartext

6.9 Allgemeine Einstellungen

6.9.1 Zugangscode

Der Zugriff auf die Einstellmenüs kann durch Zugangscodes verhindert werden. Ausgeliefert wird der DULCOMETER[®] D1Cb / D1Cc mit dem Zugangscode "5000". Bei dem eingestelltem Zugangscode "5000" sind alle Menüpunkte frei zugänglich. Bei einem anderen Zugangscode als "5000" verlangt der Regler die Eingabe des individuell gewählten Zugangscodes, falls der Menüpunkt dies erfordert. Auch bei Sperrung mit einem Zugangscode bleibt das Kalibriermenü immer frei zugänglich.

Abb. 34: Zugangscode

	Werkstein- stellung	Schrittweite	Unterer Wert	Oberer Wert	Bemerkung
Zugangscod e	5000	1	0000	9999	Bei der Werksein- stellung "5000" sind alle Menü- punkte frei zugänglich.

Zugangscode eingeben

Wenn Sie zu einem Menüpunkt kommen bei dem der Zugriff durch den Zugangscode gesperrt ist, dann fragt der Regler diesen Zugangscode bei Ihnen ab. Der Regler zeigt bei dieser Abfrage den Zugangscode "5000" an, diesen Wert "5000" müssen Sie mit Ihrem individuellen Zugangscode überschreiben. Zu diesem Überschreiben gehen Sie wie folgt vor:

- **1.** Stellen Sie mit den Pfeiltasten die erste Stelle des Zugangscodes ein. Springen Sie mit der S-Taste in die weiteren Stellen des Zugangscodes.
 - ⇒ Stellen den gewünschten Zugangscode zwischen 0000 ... 9999 ein.
- **2. b** Bestätigen Sie den gewählten Zugangscode mit der O-Taste.
 - ⇒ Die gesperrten Einstellmenüs sind nun frei zugänglich.

Zugangscode verändern

- 1. Wählen Sie mit den Pfeil-Tasten den Menüpunkt [Bedienmenü] an.
- 2. Drücken Sie bei angewählten [Bedienmenü] die O-Taste
 - ⇒ Sie gelangen in die Unterkapitel des Bedienmenüs.
- 3. Wählen Sie im [Bedienmenü] mit der S-Taste den Menüpunkt [Zugangsc.:] an.
 - ⇒ Der Menüpunkt [Zugangsc.:] fängt an zu blinken.
- **4.** Stellen Sie mit den Pfeiltasten die erste Stelle des Zugangscodes ein. Springen Sie mit der S-Taste in die weiteren Stellen des Zugangscodes.
 - ⇒ Stellen den gewünschten Zugangscode zwischen 0000 ... 9999 ein.
- 5. Bestätigen Sie den gewählten Zugangscode mit der O-Taste.

Der Zugangscode fängt wieder an zu blinken.

- 6. Bestätigen Sie den gewählten Zugangscode mit der S-Taste.
 - ⇔

Individuell eingestellter Zugangscode

Der individuell eingestellte Zugangscode lässt sich nur ändern, wenn dieser Zugangscode bekannt ist. Wenn dieser Zugangscode nicht mehr bekannt ist, lässt sich der Regler nur durch den kostenpflichtigen Werkskundendienst wieder zurücksetzen.

Der neue Zugangscode befindet sich nun im Speicher des Reglers.

7 Messgrößen und Bedienmenüs für amperometrische Sensoren

Benutzer Qualifikation: unterwiesene Personen, siehe & Kapitel 1.2 "Benutzer Qualifikation" auf Seite 9

7.1 Bedienmenü eingeschränkt / vollständig

Der DULCOMETER[®] D1Cb / D1Cc gestattet Einstellungen in zwei unterschiedlich umfangreichen Menüs (eingeschränkt / vollständig). Alle Parameter des Reglers sind voreingestellt und können im vollständigem Bedienmenü verändert werden.

Ausgeliefert wird der Regler mit eingeschränktem Bedienmenü. Sollten Anpassungen notwendig sein, können durch Umschalten auf das vollständige Bedienmenü alle Parameter geändert werden.

Abb. 35: Umschalten eingeschränkt / vollständig

7.2 Beschreibung aller amperometrischen Messgrößen

Gefahr der Fehldosierung

Es kann zu gefährlichen Fehldosierungen kommen.

Bei der Erstinbetriebnahme ist vor der Kalibrierung, die Messgröße und der Messbereich des Sensors einzustellen. Siehe & *Kapitel 5.1.2 "Auswahl der Messgröße und des Messbereiches" auf Seite 53*

Messgröße	voreingestellter Messbereich (Default)
Chlor, Chlordioxid, Ozon	2 ppm
Brom	10 ppm
Sauerstoff	20 ppm
Peressigsäure	2000 ppm

Messgröße	voreingestellter Messbereich (Default)
Wasserstoffperoxid	200 ppm
Chlorit	0,5 ppm

Die Messbereiche können in folgenden ppm Stufen gewählt werden: 0,5, 2, 5, 10, 20, 50, 100, 200, 1000, 2000, 5000, 10000, 20000.

7.3 Eingeschränktes Bedienmenü

Das eingeschränkte Bedienmenü gestattet eine Einstellung der wichtigsten Parameter.

Abb. 36: Eingeschränktes Bedienmenü
7.4 Vollständiges Bedienmenü / Beschreibung aller Messgrößen

Das vollständige Bedienmenü gestattet die Einstellung aller Parameter des Reglers. Die folgende Übersicht zeigt die auswählbaren Einstellungen:

Abb. 37: Vollständiges Bedienmenü

7.5 Kalibrierung aller amperometrischen Messgrößen

Gefahr der Fehldosierung

Es kann zu gefährlichen Fehldosierungen kommen.

Bei der Erstinbetriebnahme ist vor der Kalibrierung, die Messgröße und der Messbereich des Sensors einzustellen. Siehe & *Kapitel 5.1.2 "Auswahl der Messgröße und des Messbereiches" auf Seite 53*

Abb. 38: Kalibrierung aller amperometrischen Messgrößen

Fehlermeldung	Bedingung	Bemerkung *
Kalibrierung nicht möglich!	Steilheit zu gering	Kalibrierung wiederholen
Steilheit zu gering	(< 20 % der Normsteilheit)	
Kalibrierung nicht möglich!	Steilheit zu hoch	Kalibrierung wiederholen
Steilheit zu hoch	(> 300 % der Normsteilheit)	
DPD-Wert zu klein	DPD < 2 % vom Messbe-	Kalibrierung nach Dosier-
DPD > x.xx ppm	reich	holen oder für den Prozess geeigneten Sensor mon- tieren

* hierbei auch die Bedienungsanleitung des jeweiligen Sensors beachten.

Fehlermeldung	Bedingung	Bemerkung *
Kalibrierung nicht möglich!	< 3 mA	Sensor/Kabel überprüfen.
Nullpunkt gering	(nur bei 4 - 20 mA Sen- soren)	Abgleich in Wasser ohne Dosiermedium wiederholen
Kalibrierung nicht möglich!	> 5 mA	Sensor/Kabel überprüfen.
Nullpunkt hoch	> 6 mA für 0,5 ppm Chlorit	Abgleich in Wasser ohne Dosiermedium wiederholen

* hierbei auch die Bedienungsanleitung des jeweiligen Sensors beachten.

7.6 Kalibrierung des Sensors für amperometrische Messgrößen

Im eingeschränkten Bedienmenü des DULCOMETER® D1Cb / D1Cc kann nur die Steilheit kalibriert werden.

Im vollständigen Bedienmenü des DULCOMETER® D1Cb / D1Cc kann der Nullpunkt und die Steilheit kalibriert werden.

7.6.1 Vorbereitung der Kalibrierung der Sensoren der amperometrischen Messgrößen

Einwandfreie Sensorfunktion / Einlaufzeit

Schädigung des Produkts oder seiner Umgebung

- Korrektes Messen und Dosieren ist nur bei einwandfreier Sensorfunktion möglich
- Die Bedienungsanleitung des Sensors ist zu beachten
- Beachten Sie die Bedienungsanleitungen der Einbauarmaturen und der anderen verwendeten Komponenten
- Einlaufzeiten der Sensoren sind unbedingt einzuhalten
- Die Einlaufzeiten sind bei der Planung der Inbetriebnahme einzukalkulieren
- Das Einlaufen des Sensors kann einen ganzen Arbeitstag in Anspruch nehmen

Notwendigkeit Kalibrierung Null-

Eine Kalibrierung des Nullpunktes ist in der Regel nicht notwendig. Eine Nullpunkt Kalibrierung ist nur notwendig, wenn der Sensor an der unteren Messbereichsgrenze betrieben wird oder die 0,5 ppm Variante eines Sensors zum Einsatz kommt.

Während der Kalibrierung setzt der DULCOMETER[®] D1Cb / D1Cc die Stellausgänge auf "0". Ausnahme: Wenn eine Grundlast oder eine manuelle Stellgröße eingestellt wurde, bleibt diese aktiv. Die Normsignalausgänge mA werden eingefroren. Als DPD-Wert wird der beim Starten der Kalibrierung eingefrorene Messwert vorgeschlagen. Der DPD-Wert ist über die Pfeiltasten einstellbar. Eine Kalibrierung ist nur möglich wenn der DPD Wert ≥ 2 % vom Messbereich des Sensors ist.

7.6.2 Kalibrierung von Nullpunkt und Steilheit

HINWEIS!

Voraussetzungen für eine korrekte Kalibrierung der Sensorsteilheit

- Die in Abhängigkeit vom verwendeten Dosiermedium erforderliche DPD-Methode wird verwendet
- Einlaufzeit f
 ür den Sensor wurde eingehalten
- zulässiger und konstanter Durchfluss am Durchlaufgeber liegt vor
- Temperaturausgleich zwischen Sensor und Messwasser ist erfolgt
- konstanter pH-Wert im zugelassenen Bereich liegt vor

Messgrößen und Bedienmenüs für amperometrische Sensoren

Kalibrierung von amperometrischen Sensoren: Steilheit (Im eingeschränkten und vollständigen Bedienmenü)

Der Sensor ist eingebaut, mit Messwasser umspült, elektrisch mit dem DULCOMETER[®] D1Cb / D1Cc verbunden und eingelaufen.

Zur Kalibrierung muss sich im Messwasser ausreichend Dosiermedium befinden (> 2% vom Messbereich des Sensors).

Messwasser direkt an der Messstelle entnehmen und mit einer geeigneten Referenzmethode (z.B. DPD, Titration usw.), den Dosiermediengehalt im Messwasser in "ppm" ermitteln. Diesen Wert am DULCOMETER[®] D1Cb / D1Cc wie folgt eingeben:

- **1.** Kalibriermenü anwählen. Dann weiter mit Taste 🕥
 - ⇒ Jetzt wird der aktuelle Messwert eingefroren.
- 2. Wasserprobe nehmen und innerhalb von 15 Minuten Referenz-Messung durchführen
- 3. Zu kalibrierende Einheit "DPD-Wert" mit Taste 💿 anwählen
- 4. Weiter mit Taste 🕥
- 5. Blinkenden ppm-Wert bei Bedarf mit Tasten, O, O und S an den mit der Messung ermittelten Wert anpassen
 - ⇒ Der in diesem Display angezeigte mA-Wert des Sensors entspricht nun dem Messwert in "ppm".
- 6. Weiter mit zweimal Taste 🕥

⇒ Display zeigt nun die ermittelten Werte für Nullpunkt und Steilheit an. Bei einem eventuell angezeigten Fehler siehe Tabelle Fehlermeldung.
§ Tabelle auf Seite 74

Notwendigkeit Kalibrierung Null-

punkt

Eine Kalibrierung des Nullpunktes ist in der Regel nicht notwendig. Eine Nullpunkt Kalibrierung ist nur notwendig, wenn der Sensor an der unteren Messbereichsgrenze betrieben wird oder die 0,5 ppm Variante eines Sensors zum Einsatz kommt.

Kalibrierung von amperometrischen Sensoren: Nullpunkt (Nur im vollständigem Bedienmenü)

Zur Kalibrierung wird ein Behälter mit Wasser benötigt, das frei von Zusätzen ist, die das Messergebnis verfälschen können. Ausgebauten, aber elektrisch an den DULCOMETER[®] D1Cb / D1Cc angeschlossenen, Sensor in dieses Wasser tauchen. Mit dem Sensor ca. 5 Minuten im Wasser rühren, bis der Messwert am DULCOMETER[®] D1Cb / D1Cc stabil nahe "0" angezeigt wird.

- **1.** Kalibriermenü anwählen. Dann weiter mit Taste 🕥
- 2. Zu kalibrierende Einheit "Nullpunkt" mit Taste 💿 anwählen
- 3. Weiter mit Taste 🕥
 - ⇒ Display zeigt ein Abfrage
- 4. Abfrage mit Taste 🕥 bestätigen
- 5. Weiter mit Taste 🕥
- 6. Bei Kalibrierung "Nullpunkt" angezeigten Wert mit Taste 🔯 übernehmen
- 7. Veiter mit 🕥
 - ⇒ Display zeigt ermittelte Werte an.
- 8. Weiter mit 🕥
 - ⇒ Bei einem eventuell angezeigten Fehler siehe Tabelle Fehlermeldung.
 ♦ Tabelle auf Seite 74

HINWEIS!

Anschließend unbedingt die Steilheit mit einer geeigneten Referenzmethode (z.B. DPD, Titration usw.) kalibrieren.

7.7 Korrekturwert

ິ

Nur bei Verwendung des Sensor DULCOTEST[®] CDP für Chlordioxid ClO₂ notwendig.

Abb. 39: Korrekturwert

Die Korrekturgröße kompensiert den Einfluss der Medientemperatur auf den Messwert. Die Korrekturgröße ist die Temperatur des zu messenden Mediums. Die Medientemperatur hat einen Einfluss auf den Wert, den man messen möchte. Bei amperometrischen Sensoren nur bei der Verwendung des Sensors DULCOTEST[®] CDP für Chlordioxid CIO₂ notwendig.

Betriebsarten

- Aus: Es findet keine Temperaturkompensation statt.
 - Für Messungen die keine Temperaturkompensation benötigen.
- Automatik: Der DULCOMETER[®] D1Cb / D1Cc wertet das Temperatursignal des angeschlossenen Temperatursensors aus.
 - Für Messungen mit Temperatursensoren, die ein für den DULCOMETER[®]
 D1Cb / D1Cc verwertbares Temperatursignal liefern (Pt100/Pt1000) (0 -100 °C).
- - Für Messungen bei der das zu messende Medium eine konstante Temperatur hat, die bei der Regelung berücksichtigt werden muss.

8 Messgrößen und Bedienmenüs für potentiometrische Sensoren

Messgrößen: pH, Redox, Fluorid

Temperatureinfluss auf die pH- bzw. Fluoridmessung

Mögliche Folge: Leichte oder geringfügige Verletzungen. Sachbeschädigung.

Temperaturänderungen des Messwassers führen zu einer Veränderung der Steilheit der Kalibriergeraden (pH, Fluorid) und zu einer Verschiebung des Nullpunktes bei pH-Sensoren bzw. des Standardpotenzials E_S bei Fluorid-Sensoren.

Maßnahme, die ergriffen werden muss, um diese Gefahr zu vermeiden:

- Die pH- bzw. Fluoridmessung sollte nur in der Einstellung [Korrekturwert Temperatur automatik] erfolgen
- Der DULCOMETER[®] D1Cb / D1Cc kompensiert dann beide Effekte bei Anschluss eines Temperatursensors (Pt 100/Pt 1000) automatisch

8.1 Bedienmenü eingeschränkt / vollständig

Der DULCOMETER[®] D1Cb / D1Cc gestattet Einstellungen in zwei unterschiedlich umfangreichen Menüs (eingeschränkt / vollständig). Alle Parameter des Reglers sind voreingestellt und können im vollständigem Bedienmenü verändert werden.

Ausgeliefert wird der Regler mit eingeschränktem Bedienmenü. Sollten Anpassungen notwendig sein, können durch Umschalten auf das vollständige Bedienmenü alle Parameter geändert werden.

Abb. 40: Umschalten eingeschränkt / vollständig

8.2 Beschreibung der Messgrößen pH, Redox und Fluorid

Gefahr der Fehldosierung

Es kann zu gefährlichen Fehldosierungen kommen.

Bei der Erstinbetriebnahme ist vor der Kalibrierung, die Messgröße und der Messbereich des Sensors einzustellen. Siehe & *Kapitel 5.1.2 "Auswahl der Messgröße und des Messbereiches" auf Seite 53*

Messgröße pH	typischer Messbereich
Messbereich	- 500 mV + 500 mV
Anzeigebereich	Mindestens pH -1,45 15,45
Referenztemperatur	+25°C
Auflösung	0,01 pH

Messgrößen und Bedienmenüs für potentiometrische Sensoren

Messgröße Redox	typischer Messbereich
Messbereich	-1000 mV + 1000 mV
Auflösung	1 mV

Messgröße Fluorid	Messbereich
Messbereich	010 ppm
	0 99,99 ppm
Auflösung	0,01 ppm

8.3 Eingeschränktes Bedienmenü pH / Redox / Fluorid

Das eingeschränkte Bedienmenü gestattet eine Bedienung der wichtigsten Parameter. Die folgende Übersicht zeigt die auswählbaren Einstellungen: (hier dargestellt für die Messgröße pH)

Messgrößen und Bedienmenüs für potentiometrische Sensoren

Abb. 41: Eingeschränktes Bedienmenü pH/Redox/Fluorid (gezeigt am Beispiel pH)

8.4 Vollständiges Bedienmenü / Beschreibung pH / Redox / Fluorid

Das vollständige Bedienmenü gestattet die Einstellung aller Parameter des DULCOMETER[®] D1Cb / D1Cc. Die folgende Übersicht zeigt die auswählbaren Einstellungen: (hier dargestellt für die Messgröße pH)

Abb. 42: Vollständiges Bedienmenü pH/Redox/Fluorid

8.5 Kalibrierung von pH-, Redox- und Fluorid-Sensoren

Fehldosierung durch falschen Messbereich

Mögliche Folge: Tod oder Verletzungen.

- Maßgeblich f
 ür den Messbereich, ist der Messbereich des Sensors!
- Bei Änderung der Messbereichszuordnung müssen in allen Menüs die Einstellungen überprüft werden
- Bei Änderung der Messbereichszuordnung muss der Sensor neu kalibriert werden

Während der Kalibrierung: der DULCOMETER[®] D1Cb / D1Cc, siehe & *Kapitel 1.2 "Benutzer Qualifikation" auf Seite 9* setzt die Stellausgänge auf "0". Ausnahme: Wenn eine Grundlast oder eine manuelle Stellgröße eingestellt wurde. Diese bleibt aktiv. Die Normsignalausgänge mA werden eingefroren.

Bei erfolgreicher Kalibrierung/Prüfung, werden alle Fehleruntersuchungen, die sich auf den Messwert beziehen, neu begonnen. Der DULCOMETER[®] D1Cb / D1Cc speichert die ermittelten Daten für Nullpunkt und Steilheit ab. Siehe & Kapitel 10.7.3.7 "Kalibrierlogbuch" auf Seite 131

\Lambda VORSICHT!

Einwandfreie Sensorfunktion / Einlaufzeit

Schädigung des Produkts oder seiner Umgebung

- Korrektes Messen und Dosieren ist nur bei einwandfreier Sensorfunktion möglich
- Die Betriebsanleitung des Sensors ist zu beachten
- Einlaufzeiten der Sensoren sind unbedingt einzuhalten
- Die Einlaufzeiten sind bei der Planung der Inbetriebnahme einzukalkulieren

8.5.1 Beschreibung der Kalibrierung von pH-Sensoren

8.5.1.1 2-Punkt Kalibrierung

2-Punkt Kalibrierung

Empfehlung als Standardmethode

Kalibrierung von pH-Sensoren mit der Korrekturgröße Temperatur

Bei der Kalibrierung mit der Korrekturgröße Temperatur muss vor der Kalibrierung im Betriebszustand "manuell" die Temperatur der Pufferlösung eingestellt werden.

Im Betriebszustand "Automatik" muss der Temperatursensor in die Pufferlösung getaucht werden. Dann werden die Kalibrierwerte unter Berücksichtigung der Puffertemperatur berechnet.

Abb. 43: Kalibrierung von pH-Sensoren

Zur Kalibrierung werden zwei Testbehälter mit Pufferlösung benötigt. Der pH-Wert der Pufferlösungen muss mindestens zwei pH-Werte voneinander auseinander liegen. Der Sensor muss beim Wechseln der Pufferlösung gründlich mit Wasser gespült werden.

- 1. Kalibriermenü anwählen 🕥
- 2. Sensor in Testbehälter 1 mit Pufferlösung (z.B. pH 7) tauchen
- 3. Sensor leicht bewegen, bis der angezeigte pH-Wert sich nicht mehr verändert
- 4. Weiter mit 🕥
 - ⇒ Kalibrierung läuft.

Nach Ablauf der Wartezeit wird ein Pufferwert vorgeschlagen.

- **5.** Angezeigten pH-Wert bei Bedarf mit Tasten ③, ③ und ⑥ an den tatsächlichen Wert der Pufferlösung im Testbehälter 1 anpassen
- 6. Weiter mit 🕥
- **7.** Sensor entnehmen, gründlich mit Wasser spülen und anschließend mit einem Lappen trocknen (nicht reiben, sondern tupfen)
- 8. Sensor in Testbehälter 2 mit Pufferlösung (z.B. pH 4) tauchen
- 9. Sensor leicht bewegen, bis der angezeigte pH-Wert sich nicht mehr verändert
- 10. Weiter mit 🕥
 - ⇒ Kalibrierung läuft.

Nach Ablauf der Wartezeit wird ein Pufferwert vorgeschlagen.

- **11.** Angezeigten pH-Wert bei Bedarf mit Tasten ③, ③ und ⑥ an den tatsächlichen Wert der Pufferlösung im Testbehälter 2 anpassen
- 12. Weiter mit 🕥
 - ⇒ Ermittelte Einstellungen werden angezeigt.
- 13. Bei korrektem Kalibrierergebnis mit Taste 🕥 bestätigen
 - ⇒ Erst jetzt wird die neue Kalibrierung übernommen.

Falls das Ergebnis der Kalibrierung außerhalb der vorgegebenen Fehlergrenzen liegt, erscheint eine Fehlermeldung, siehe & *Kapitel 8.5.3 "Kalibrierung von pH-Sensoren. Beschreibung der Fehlermeldungen" auf Seite 89*. In dem Fall wird die aktuelle Kalibrierung nicht übernommen.

8.5.1.2 1-Punkt Kalibrierung

1-Punkt Kalibrierung

Empfehlung nur bei Sonderanwendungen. z.B. Schwimmbadwasser

Kalibrierung von pH-Sensoren mit der Korrekturgröße Temperatur

Bei der Kalibrierung mit der Korrekturgröße Temperatur muss vor der Kalibrierung im Betriebszustand "manuell" die Temperatur der Pufferlösung eingestellt werden.

Im Betriebszustand "Automatik" muss der Temperatursensor in die Pufferlösung getaucht werden. Dann werden die Kalibrierwerte unter Berücksichtigung der Puffertemperatur berechnet. Zur Kalibrierung wird ein Testbehälter mit Pufferlösung benötigt.

- 1. Kalibriermenü anwählen 🕥
- Sensor in Testbehälter mit Pufferlösung (z.B. pH 7) tauchen
- Sensor leicht bewegen, bis der angezeigte pH-Wert sich nicht mehr verändert
- 4. 🕨 Weiter mit 🕥
 - ⇒ Kalibrierung läuft.

Nach Ablauf der Wartezeit wird ein Pufferwert vorgeschlagen.

- 5. Angezeigten pH-Wert bei Bedarf mit Tasten S, O und an den tatsächlichen Wert der Pufferlösung im Testbehälter anpassen
- 6. Veiter mit 🕥
- 7. Veiter mit 🗐
 - ⇒ Ermittelte Einstellungen werden angezeigt.
- 8. Bei korrektem Kalibrierergebnis mit Taste 🛞 bestätigen
 - ⇒ Erst jetzt wird die neue Kalibrierung übernommen.

Falls das Ergebnis der Kalibrierung außerhalb der vorgegebenen Fehlergrenzen liegt, erscheint eine Fehlermeldung, siehe *∜ Kapitel 8.5.3 "Kalibrierung von pH-Sensoren. Beschreibung der Fehlermeldungen" auf Seite 89.* In dem Fall wird die aktuelle Kalibrierung nicht übernommen.

8.5.2 Kalibrierung von pH-Sensoren. Beschreibung der Einstellbereiche

Einstellung		Mögliche Werte			
	Anfangswert	Schrittweite	Unterer Wert	Oberer Wert	Bemerkung
Kalibriertem- peratur	Messwert	0,1 °C	0°C	100 °C	
Pufferwerte	ganzzahlig gerundeter Messwert	0,01 pH	-1,45 pH	15,45 pH	Fehlermel- dung wenn die beiden Puffer zu nah beiei- nander liegen (<2 pH-Werte)

8.5.3 Kalibrierung von pH-Sensoren. Beschreibung der Fehlermeldungen

Fehlermeldung	Bedingung	Wirkung			
Pufferabstand zu klein	∆Puffer <2 pH	Während des Kalibriervorgangs: Nochmal Puffer 2 kalibrieren!			
		Zurück zur Daueranz	eige		
pH-Nullpunkt gering	<-60 mV	Grundlast Dosie- rung	Hinweis: alter Nullpunkt und Steilheit bleiben		
pH-Nullpunkt hoch	>+60 mV	Grundlast Dosie- rung	Hinweis: alter Nullpunkt und Steilheit bleiben		
pH-Steilheit gering	<40 mV/pH	Grundlast Dosie- rung	Hinweis: alter Nullpunkt und Steilheit bleiben		
pH-Steilheit hoch	>65mV/pH	Grundlast Dosie- rung	Hinweis: alter Nullpunkt und Steilheit bleiben		
Messwert pH unruhig			Hinweis: alter Nullpunkt und Steilheit bleiben		
Messwert °C unruhig			Hinweis: alter Nullpunkt und Steilheit bleiben		
Für alle Fehlermeldungen gilt: Fehlerquelle beseitigen und Kalibrierung wiederholen.					

8.5.4 Prüfen des Redox-Sensor

🔨 VORSICHT!

Einwandfreie Sensorfunktion / Einlaufzeit

Schädigung des Produkts oder seiner Umgebung

- Korrektes Messen und Dosieren ist nur bei einwandfreier Sensorfunktion möglich
- Die Betriebsanleitung des Sensors ist zu beachten
- Einlaufzeiten der Sensoren sind unbedingt einzuhalten
- Die Einlaufzeiten sind bei der Planung der Inbetriebnahme einzukalkulieren

HINWEIS!

Prüfen des Redox-Sensor

Bei Messgröße Redox wird der Sensor nicht kalibriert sondern, bauartbedingt, geprüft

- Abweichende Handlungsanweisung zum Prüfen des Redox-Sensors beachten
- Sollte die Prüfung nicht erfolgreich sein, ist der Redox-Sensor zu ersetzen

Abb. 44: Prüfen von Redox-Sensoren

8.5.4.1 Beschreibung der Prüfung von Redox-Sensoren

Zur Prüfung wird ein Behälter mit einer Redox-Pufferlösung (z.B. 465 mV) benötigt.

1. Prüfmenü anwählen 🕥

Messgrößen und Bedienmenüs für potentiometrische Sensoren

- 2. Redox-Sensor in Testbehälter mit Redox-Pufferlösung (z.B. 465 mV) tauchen
- 3. Prüfung mit 🕥 starten
 - ⇒ Prüfung läuft.

Nach Ablauf der Wartezeit wird ein Pufferwert vorgeschlagen.

- 4. Angezeigten Wert "Puffer" (blinkt) mit den Tasten (), () und () auf den mV-Wert der Redox-Pufferlösung im Testbehälter einstellen. Wert mit () bestätigen
 - ⇒ Der D1Cb gibt die Status-Meldung des Redox-Sensor im Klartext aus. Ist der Redox-Sensor in Ordnung, wird direkt die Daueranzeige 1 angezeigt
- 5. Ist der Redox-Sensor verunreinigt oder defekt, ist der Redox-Sensor, wie in der Betriebsanleitung des Redox-Sensor beschrieben, zu reinigen oder zu ersetzen

Falls das Ergebnis der Kalibrierung außerhalb der vorgegebenen Fehlergrenzen liegt, erscheint eine Fehlermeldung, siehe ♦ Kapitel 8.5.4.3 "Prüfen von Redox-Sensoren. Beschreibung der Fehlermeldungen" auf Seite 92

8.5.4.2 Prüfen von Redox-Sensoren Tabellen-Pufferwerte

Tabelle: Mögliche Pufferwerte

		Mögliche Werte			
Einstellung	Anfangswert	Schrittweite	Unterer Wert	Oberer Wert	Bemerkung
Pufferwerte	Messwert	1 mV	-1500 mV	+1500 mV	
185-265 mV	220 mV				
425-505 mV	465 mV				

8.5.4.3 Prüfen von Redox-Sensoren. Beschreibung der Fehlermeldungen

Tabelle: Mögliche	Fehlermeldungen	beim Prüfen	der Redox-Sensoren
-------------------	-----------------	-------------	--------------------

Fehlermeldung	Bedingung	Wirkung	
Messwert hoch	Messwert	Zurück zur Daueranzeige	
	40 mV>Puffer	Grundlast Dosierung	
Messwert tief	Messwert	Zurück zur Daueranzeige	
	40 mV <puffer< td=""><td>Grundlast Dosierung</td></puffer<>	Grundlast Dosierung	

8.5.5 Beschreibung der Kalibrierung von Fluorid-Sensoren

Abb. 45: Kalibrieren Fluorid-Sensor

8.5.5.1 Beschreibung der Kalibrierung von Fluorid-Sensoren

Korrekturgröße Temperatur

Bei der Kalibrierung mit der Korrekturgröße Temperatur muss die Temperatur der Pufferlösung eingestellt werden. Vor der Kalibrierung im Betriebszustand "manuell". Siehe ♦ Kapitel 8.6 "Korrekturwert Temperatur für pH- und Fluorid-Sensoren" auf Seite 96

Im Betriebszustand "Automatik" muss der Temperatursensor in die Pufferlösung getaucht werden. Dann werden die Kalibrierwerte unter Berücksichtigung der Temperatur berechnet.

8.5.5.1.1 Beschreibung der 2-Punkt Kalibrierung für Fluorid-Sensoren

Benötigtes Material zur Kalibrierung von Fluorid-Sensoren

- Zwei Testbehälter mit Kalibrierlösung
- Ein Thermometer zum Messen in Flüssigkeiten (im Betriebsmodus "Korrekturwert Temperatur manuell")

Zur Kalibrierung werden zwei Testbehälter mit Kalibrierlösung benötigt. Der Fluorid-Gehalt der Kalibrierlösungen muss mindestens 0,5 ppm F- voneinander auseinander liegen. Der Sensor muss beim Wechseln der Kalibrierlösung gründlich mit Fluoridfreiem Wasser gespült werden.

- 1. 🔊 Kalibriermenü anwählen 🕥
 - ⇒ Im Betriebsmodus "Korrekturwert Temperatur manuell": erscheint das Kalibrier-Display und der Wert für Temperatur blinkt.

Im Betriebsmodus "Korrekturwert Temperatur automatik": erscheint das Kalibrier-Display

- 2. Mit dem Thermometer die Temperatur der Kalibrierlösung 1 messen (nur im Betriebsmodus "Korrekturwert Temperatur manuell")
- Ermittelten Temperaturwert der Kalibrierlösung mit den Tasten O, O und S in den DULCOMETER[®] D1Cb / D1Cc eingeben
- 4. Eingabe mit Taste 💿 bestätigen
 - ⇒ Der DULCOMETER[®] D1Cb / D1Cc berücksichtigt bei der Kalibrierung die momentane Temperatur der Kalibierlösung.

- Fluorid-Sensor in Kalibrierlösung 1 tauchen und warten bis der angezeigte mV-Wert stabil bleibt (Schwankung < 0,05 mV/min)
- 6. Durch das Drücken der Taste 💿 den Kalibriervorgang starten
 - ⇒ Kalibrierung läuft
- Die ermittelte Konzentration der Kalibrierlösung mit den Tasten O, O und S in den DULCOMETER[®] D1Cb / D1Cc in ppm eingeben
- 8. ppm Wert mit Taste 🕥 bestätigen
 - ⇒ Im Betriebsmodus "Korrekturwert Temperatur manuell": erscheint das Kalibrier-Display und der Wert für Temperatur blinkt.

Im Betriebsmodus "Korrekturwert Temperatur automatik": erscheint das Kalibrier-Display

- 9. Mit dem Thermometer die Temperatur der Kalibrierlösung 2 messen (im Betriebsmodus "Korrekturwert Temperatur manuell")
- **10.** Vorbereiten zum Kalibrieren in Kalibrierlösung 2
- 11. Ermittelten Temperaturwert der Kalibrierlösung mit den Tasten ⓒ, ⓒ und ⓒ in den DULCOMETER[®] D1Cb / D1Cc eingeben
- 12. Eingabe mit Taste 🕥 bestätigen
 - ⇒ Der DULCOMETER[®] D1Cb / D1Cc berücksichtigt bei der Kalibrierung die momentane Temperatur der Kalibierlösung.

- 13. Der Fluorid-Sensor muss beim Wechseln der Kalibrierlösung gründlich mit Fluoridfreiem Wasser gespült werden
- 14. ► Fluorid-Sensor in Kalibrierlösung 2 tauchen und warten bis der angezeigte mV-Wert stabil bleibt (Schwankung < 0,05 mV/min)
- **15.** Durch drücken der Taste 🛞 Kalibriervorgang starten
 - ⇒ Kalibrierung läuft.
- 16. ► Ermittelte Konzentration der Kalibrierlösung mit den Tasten ⓒ, ⓒ und ⓒ in den DULCOMETER® D1Cb / D1Cc in ppm eingeben
- 17. ppm Wert mit Taste 🕥 bestätigen
 - ⇒ Display des DULCOMETER[®] D1Cb / D1Cc zeigt das Ergebnis der Kalibrierung an. Bei einem korrekten Kalibrierergebnis mit Taste () bestätigen.

8.5.5.1.2 1-Punkt Kalibrierung Fluorid-Sensor

Kalibrierung Fluorid Beschreibung 1-Punkt Kalibrierung

Zur Kalibrierung wird ein Behälter mit Kalibrierlösung benötigt.

- 1. Kalibriermenü anwählen 🕥
 - Im Betriebsmodus "Korrekturwert Temperatur manuell": erscheint das Kalibrier-Display und der Wert für Temperatur blinkt.

Im Betriebsmodus "Korrekturwert Temperatur automatik": erscheint das Kalibrier-Display

- 2. Mit dem Thermometer die Temperatur der Kalibrierlösung 1 messen (nur im Betriebsmodus "Korrekturwert Temperatur manuell")
- 3. ► Ermittelten Temperaturwert der Kalibrierlösung mit den Tasten ⓒ, ⓒ und ⓒ in den DULCOMETER® D1Cb / D1Cc eingeben
- 4. Eingabe mit Taste 💿 bestätigen
 - ⇒ Der DULCOMETER[®] D1Cb / D1Cc berücksichtigt bei der Kalibrierung die momentane Temperatur der Kalibierlösung.
- Fluorid-Sensor in Kalibrierlösung 1 tauchen und warten bis der angezeigte mV-Wert stabil bleibt (Schwankung < 0,05mV/min)
- **6.** Durch das Drücken der Taste 🕅 Kalibriervorgang starten
 - ⇒ Kalibrierung läuft

- Die ermittelte Konzentration der Kalibrierlösung mit den Tasten O, O und S in den DULCOMETER[®] D1Cb / D1Cc in ppm eingeben
- 8. ppm Wert mit Taste 🕥 bestätigen

8.6 Korrekturwert Temperatur für pH- und Fluorid-Sensoren

Temperatureinfluss auf die pH- bzw. Fluoridmessung

Mögliche Folge: Leichte oder geringfügige Verletzungen. Sachbeschädigung.

Temperaturänderungen des Messwassers führen zu einer Veränderung der Steilheit der Kalibriergeraden (pH, Fluorid) und zu einer Verschiebung des Nullpunktes bei pH-Sensoren bzw. des Standardpotenzials E_s bei Fluorid-Sensoren.

Maßnahme, die ergriffen werden muss, um diese Gefahr zu vermeiden:

- Die pH- bzw. Fluoridmessung sollte nur in der Einstellung [Korrekturwert Temperatur automatik] erfolgen
- Der DULCOMETER[®] D1Cb / D1Cc kompensiert dann beide Effekte bei Anschluss eines Temperatursensors (Pt 100/Pt 1000) automatisch

Abb. 46: Korrekturwert Temperatur für pH- und Fluorid-Sensoren

Korrekturwert Temperatur für pH- und Fluorid-Sensoren laut Identcode:

	Mögliche Werte			
Laut Identcode	Schrittweite	Unterer Wert	Oberer Wert	
0	aus			
2	aus manuell automatik			
4	aus manuell			

Korrekturwert Temperatur für pH- und Fluorid-Sensoren

		Mögliche Werte		
	Werkseinstel- lung	Schrittweite	Unterer Wert	Oberer Wert
Manuelle Tempera- turkompensation	25 °C	0,1 °C	0 °C	100 °C

9 Messgrößen und Bedienmenüs für das Normsignal allgemein

9.1 Erläuterung zum Normsignal allgemein

Die Messgröße "Normsignal allgemein" des DULCOMETER® D1Cb / D1Cc dient dazu Sensoren von Drittanbieter, die ein linieares mA-Signal ausgeben, an den DULCOMETER® D1Cb / D1Cc anzuschließen. Der DULCOMETER® D1Cb / D1Cc ist somit in der Lage, entsprechende Sensoren, etc. vorausgesetzt, eine Vielzahl physikalischer Messgrößen, siehe & *Tabelle auf Seite 101*, zu messen und zu regeln.

Sensorausgangssignal anpassen

Um den DULCOMETER[®] D1Cb / D1Cc an das Ausgangssignal des Sensors bzw. des Messgerätes anzupassen, müssen Sie folgende Schritte ausführen:

HINWEIS!

Lineare Kennlinie

Da der DULCOMETER® D1Cb / D1Cc ausschließlich lineare Kennlinien verarbeiten kann, können nur Sensoren/Messgeräte, die ein lineares Signal ausgeben, angeschlossen werden.

- 1. Umstellen des DULCOMETER[®] D1Cb / D1Cc auf das vollständige Bedienmenü
- Einstellen der gewünschten physikalischen Einheit (Messgröße)

Anzeigetoleranzen

Bei Sensoren bzw. bei Ausgangssignalen von Messgeräten die nicht kalibriert werden müssen, bzw. bei denen die Kalibrierung im Sensor/ Messgerät erfolgt, müssen abschließend die Anzeigetoleranzen zwischen Sensor bzw. Messgerät und DULCOMETER® D1Cb / D1Cc abgeglichen werden.

3. Dazu das Menü "Messwert einstellen" siehe , auswählen.

- 4. Messbereichsgrenze 0/4 mA und 20 mA durch heben und/oder senken der Messwerte anpassen
 - ⇒ Die Messbereichsgrenzen werden angepasst, um die Anzeigetoleranz zwischen Sensor bzw. Messgerät und DULCOMETER[®] D1Cb abzugleichen.

HINWEIS!

Kalibrierung

ProMinent bietet auch die Möglichkeit einer Einpunkt- bzw. Zweipunktkalibrierung der Messgröße "Normsignal allgemein". Diese Kalibriermöglichkeit sollte nur verwendet werden, wenn der Hersteller des Sensor bzw. des Messgerätes dies in seiner Sensorbzw. Messgerätebedienungsanleitung beschreibt bzw. erlaubt.

9.2 Messgröße ändern

Fehldosierung durch falsche Messgröße

Mögliche Folge: Tod oder Verletzungen

- Maßgeblich f
 ür die Messgr
 ö
 ße/Messbereich, ist der Messgr
 ö
 ße/Messbereich des Sensors!
- Bei Änderung der Messgröße/Messbereiches muss der Sensor neu kalibriert werden
- Bei Änderung des Messgröße/Messbereiches werden Soll- und Grenzwerte auf die zugehörigen Anfangswerte umgeschaltet!
- Bei Änderung der Messgröße/Messbereiches muss in allen Menüs die Einstellungen überprüft werden

Abb. 47: Messgröße ändern "Normsignal allgemein"

Mögliche Messgrößen siehe & Tabelle auf Seite 101.

9.3 Bedienmenü eingeschränkt / vollständig

Der DULCOMETER[®] D1Cb / D1Cc gestattet Einstellungen in zwei unterschiedlich umfangreichen Menüs (eingeschränkt / vollständig). Alle Parameter des Reglers sind voreingestellt und können im vollständigem Bedienmenü verändert werden.

Ausgeliefert wird der Regler mit eingeschränktem Bedienmenü. Sollten Anpassungen notwendig sein, können durch Umschalten auf das vollständige Bedienmenü alle Parameter geändert werden.

Abb. 48: Umschalten eingeschränkt / vollständig

9.4 Beschreibung aller Messwerte/Messgrößen Normsignal

	mögliche Werte				
Messgröße	Schrittweite	untere Wert	oberer Wert	Messbereich*	
Messsignal	0,1%	-5,0 %	105,0 %	100 %	
	0,01 mA	-1.00 mA	21,00 mA	20 mA	
Füllstand	0,01 m	0,00 m	31,50 m	30 m	
	0,1 %	0,0 %	105,0 %	100 %	
Druck	0,001 bar	0,000 bar	1,050 bar	1,000 bar	
	0,001 bar	0,000 bar	5,250 bar	5,000 bar	
	0,01 bar	0,00 bar	10,50bar	10,00 bar	
	0,1 bar	0,0 bar	105,0 bar	100,0 bar	
	0,1 psi	0,0 psi	105,0 psi	100 psi	
	1 psi	0 psi	1050 psi	1000 psi	
Durchfluss	0,001 m ³ /h	0,000 m ³ /h	10,00 m ³ /h	9,999 m ³ /h	
	0,1 m ³ /h	0,0 m ³ /h	105,0 m ³ /h	100 m³/h	
	1 m ³ /h	0 m ³ /h	1050 m³/h	1000 m³/h	
	0,1 gal/h	0,0 gal/h	105,0 gal/h	100 gal/h	
	1 gal/h	0 gal/h	1050 gal/h	1000 gal/h	
Konzentration	1 ppm	0 ppm	1050 ppm	1000 ppm	
* Maximaler einstellbarer Sollwert					

Messgrößen und Bedienmenüs für das Normsignal allgemein

	mögliche Werte				
Messgröße	Schrittweite	untere Wert	oberer Wert	Messbereich*	
Relative Feuchte	0,1 %RF	0,0 %RF	105,0 %RF	100 %RF	
mA-Signal	0,01 mA	0,00 mA	21,00 mA	20 mA	
	0,01 mA	4,00 mA	21,00 mA	20 mA	
Trübungswert	1 NTU	0 NTU	10 NTU	10 NTU	
	1 NTU	0 NTU	105 NTU	100 NTU	
	1 NTU	0 NTU	2100 NTU	2000 NTU	
* Maximaler einstellbarer Sollwert					

9.5 Eingeschränktes Bedienmenü

Das eingeschränkte Bedienmenü gestattet eine Einstellung der wichtigsten Parameter. Die folgende Übersicht zeigt die auswählbaren Einstellungen:

Abb. 49: Eingeschränktes Bedienmenü / Dargestellt mit der Messgröße % und dem Messbereich 0%....100%

9.6 Vollständiges Bedienmenü / Beschreibung aller Messgrößen

Das vollständige Bedienmenü gestattet die Einstellung aller Parameter des Reglers. Die folgende Übersicht zeigt die auswählbaren Einstellungen:

Abb. 50: Vollständiges Bedienmenü / Dargestellt mit der Messgröße % und dem Messbereich 0%....100%

9.7 Kalibrieren des Normsignals

Im eingeschränkten Bedienmenü: Der DULCOMETER® D1Cb / D1Cc kalibriert den Nullpunkt. Im vollständigen Bedienmenü: Der DULCOMETER[®] D1Cb / D1Cc führt eine Zweipunktkalibrierung durch.

Fehldosierung durch falschen Messbereich

Mögliche Folge: Tod oder Verletzungen

- Maßgeblich f
 ür den Messbereich, ist der Messbereich des Sensors bzw. des Messger
 ätes!
- Bei Änderung der Messbereichszuordnung müssen in allen Menüs die Einstellungen überprüft werden
- Bei Änderung der Messbereichszuordnung muss der Sensor bzw. das Messgerät neu kalibriert werden

Einwandfreie Sensorfunktion / Einlaufzeit

Schädigung des Produkts oder seiner Umgebung

- Korrektes Messen und Dosieren ist nur bei einwandfreier Sensorfunktion möglich
- Die Betriebsanleitung des Sensors bzw. des Messgerätes ist zu beachten
- Einlaufzeiten der Sensoren bzw. des Messgerätes sind unbedingt einzuhalten
- Die Einlaufzeiten sind bei der Planung der Inbetriebnahme einzukalkulieren
- Das Einlaufen des Sensors bzw. des Messgerätes kann einen ganzen Arbeitstag in Anspruch nehmen

Während der Kalibrierung setzt der DULCOMETER[®] D1Cb / D1Cc die Stellausgänge auf "0". Ausnahme: Wenn eine Grundlast oder eine manuelle Stellgröße eingestellt wurde. Diese bleibt aktiv. Die Normsignalausgänge mA werden eingefroren. Als Wert wird der beim Starten der Kalibrierung eingefrorene Messwert vorgeschlagen. Dieser Wert ist über die Pfeiltasten einstellbar. Eine Kalibrierung ist nur möglich wenn der Wert ≥ 2 % vom Messbereich des Sensors bzw. des Messgerätes ist.

Fehlermeldung Kalibriermenü

Fehlermeldung	Bedingung	Wirkung				
Messwertabstand zu klein	∆ Wert < 5,0 %*	Messwert wird verworfen;				
	∆ Wert <1,00 mA*	Kalibrierung des Mes- spunktes wiederholen!				
Bei allen Fehlermeldungen auch die Betriebsanleitung des jeweiligen Sensors beachten und zur Fehlerbeseitigung heranziehen.						

* vom Messbereich und Messwert, siehe & Tabelle auf Seite 101

9.7.1 Kalibrieren des Nullpunktes des Normsignal allgemein

Abb. 51: Menü Nullpunktkalibrierung / dargestellt in der Messgröße Durchfluss und dem Messbereich 0...100 m³/h

Die Steilheit im Kalibriermenü wird als mA Wert dargestellt. Dieser Wert ist zu verstehen als mA/gewählte Messeinheit.

Kalibrieren im eingeschränktem Bedienmenü

- 1. 🔈 Das Kalibriermenü anwählen. Dann weiter mit Taste 💿
- 2. Den mit der, für die jeweilige Messgröße geeigneten, Messmethode ermittelten Ist-Wert mit den Tasten <a>[O], <a>[O] und <a>[S] in den DULCOMETER[®] D1Cb / D1Cc eingeben. Eingabe mit Taste <a>[O] bestätigen
- 3. Weiter mit Taste 🔯. Bei einem eventuell angezeigten Fehler siehe 🌣 "*Fehlermeldung Kalibriermenü" Tabelle auf Seite 106*
 - ⇒ Kalibrierung ist beendet.
- 4. 🕒 Weiter mit Taste 🕥
 - ⇒ Das Display zeigt nun die ermittelten Werte für Nullpunkt und Steilheit an.

9.7.2 Zweipunktkalibrierung des Normsignal allgemein

Abb. 52: Menü Zweipunktkalibrierung / dargestellt in der Messgröße Durchfluss und dem Messbereich 0...100 m³/h

Messgrößen und Bedienmenüs für das Normsignal allgemein

Kalibrieren im vollständigem Bedienmenü

- 1. Das Kalibriermenü anwählen. Dann weiter mit Taste 💿
- 2. Abfrage mit Taste 🕥 bestätigen
- 3. ▶ Den mit der, für die jeweilige Messgröße geeigneten, Messmethode ermittelten Ist-Wert 1 mit den Tasten ②, ③ und ⑤ in den DULCOMETER[®] D1Cb / D1Cc eingeben. Eingabe mit Taste ③ bestätigen. Wert blinkt
- 4. 🕒 Weiter mit Taste 🕥
- 5. Abfrage mit Taste 🕥 bestätigen
- 6. Den mit der, für die jeweilige Messgröße geeigneten, Messmethode ermittelten Ist-Wert 2 mit den Tasten ⊚, ⊚ und ⓒ in den DULCOMETER[®] D1Cb / D1Cc eingeben. Eingabe mit Taste ⓒ bestätigen. Wert blinkt
- 7. Weiter mit Taste 🕥
 - ⇒ Das Display zeigt nun die ermittelten Werte für Nullpunkt und Steilheit an. Bei einem eventuell angezeigten Fehler siehe *Seite 106*
10 Messgrößenunabhängige Bedienmenüs

■ Benutzer Qualifikation: unterwiesene Personen, siehe & Kapitel 1.2 "Benutzer Qualifikation" auf Seite 9

Messgrößenunabhängige

Bedienmenüs

Dieser Abschnitt der Betriebsanleitung DULCOMETER[®] D1Cb / D1Cc beschreibt die Bedienmenüs, die von der Messgröße unabhängig sind.

10.1 Pumpen

VORSICHT!

Bedienungsanleitung der Pumpe beachten

Möglichkeit der Beschädigung der Pumpe. Störungen im Prozess.

- Die Pumpe muss auf den Betriebszustand "externer Kontakt" gestellt werden
- Die maximale Hubzahl der Pumpe beachten
- Möglicherweise vorhandene Hubspeicher in der Steuerung der Pumpe sind abzuschalten
- Die maximale Hubzahl der Pumpe ist der Bedienungsanleitung der Pumpe zu entnehmen
 - Die Einstellung einer Hubzahl am Regler, die höher ist als tatsächlich mögliche maximale Hubzahl der Pumpe, kann zu gefährlichen Betriebszuständen führen

HINWEIS!

Maximale Pumpenfrequenz

Die Pumpen werden entsprechend der Stellgröße bis zur jeweiligen maximalen Hubfrequenz der Pumpe angesteuert.

Abb. 53: Pumpen

	Werkseinstel- lung	Schrittweite	Unterer Wert	Oberer Wert	Bemerkung		
Hübe	180	1	0	500			
Ausschlaggebend für die Einstellung der Hübe ist die Förderleistung der Pumpe, im							

Ausschlaggebend für die Einstellung der Hube ist die Forderleistung der Pumpe, in Bezug zum jeweiligen Prozess. Maximale Pumpenfrequenz beachten

10.2 Relais einstellen

Relais Kombination

Das Relais 1 und das Relais 2 können unabhängig voneinander konfiguriert werden. So ist jede beliebige Kombination aus "Aus / Grenze / Stellg / MV / Timer" möglich.

		N	Nögliche Werte	1	
	Werkseinstel- lung	Schrittweite	Unterer Wert	Oberer Wert	Bemerkung
Relaiszu- ordnung	Laut Identcode	Magnet- ventil (MV1, MV2)			*Bei Grenz- wert bleiben die Relais
		Grenzwert (Grenze 1/2)*			auch im Feh- lerfall akti- viert.
		Stellglied 1/2			
		Timer 1/2			
		Aus			
Zyklus	10 s	1 s	10 s	9999 s	Für Magnet- ventil
Min. Zeit	1 s	1 s	1 s	Zyklus/2	Für Magnet- ventil: hier ist die kleinste erlaubte Ein- schaltdauer des ange- schlossenen Gerätes ein- zustellen
Zyklus	Aus	1 h	1 h/aus	240 h	Für Timer
T ein	1 Minute	1 Minute	1 Minute	240 Min.	Für Timer

10.2.1 Einstellung und Funktionsbeschreibung der Relais

10.2.1.1 Einstellung und Funktionsbeschreibung "Relais aus"

Abb. 54: Relais aus

Die Funktion der Relais wird ausgeschaltet.

10.2.1.2 Einstellung und Funktionsbeschreibung "Relais als Grenzwertrelais"

Abb. 55: Grenzwert-Relais

Die Relais 1 und/ oder 2 können als Grenzwertrelais betrieben werden. Die Grenzwerte können im Menü & *Kapitel 10.3 "Einstellen der Grenzwerte" auf Seite 118* eingestellt werden.

10.2.1.3 Einstellung und Funktionsbeschreibung "Relais als Stellglied"

Abb. 56: Relais als Stellglied

Grenzwertrelais als Stellglied

Erweiterte Funktionsmöglichkeit

 Die Grenzwertrelais können auch so definiert werden, dass sie wie ein Stellglied reagieren. Hat z. B. ein Grenzwertrelais angezogen, so fällt es bei geschlossenem Pausekontakt und anschließende Verzögerungszeit t_d ab (wenn t_d > 0 min in "Allgemeine Einstellungen" eingestellt ist).

10.2.1.4 Einstellung und Funktionsbeschreibung des Timerrelais

Ohne Versorgungsspannung wird der Timer zurückgesetzt

Mögliche Folge: leichte oder geringfügige Verletzungen. Sachbeschädigung.

- Spannungsversorgung so auslegen, dass keine Unterbrechung auftreten kann
- Bei kritischen Prozessen ist ein möglicher Ausfall des Timers konstruktiv zu berücksichtigen

Abb. 57: Timerrelais

Abb. 58: Timerrelais

Am Ende der (Timer-)Zyklus-Zeit schließt der DULCOMETER[®] D1Cb / D1Cc das zugeordnete Timerrelais für die Dauer von "t ein" (Timer). Eine "Pause" unterbricht den Timer. Wenn im LCD-Display die Uhr zu sehen ist, dann kann der Timer über die Eingabe-Taste an den Anfang des Zyklus zurückgesetzt werden. Die %-Angabe im LCD-Display gibt die Restlaufzeit an.

10.2.1.5 Einstellung und Funktionsbeschreibung "Relais als Magnetventil"

Abb. 59: Magnetventil-Relais

Abb. 60: Magnetventile

Die Schaltzeiten des Relais (Magnetventil) hängen von der Stellgröße ab und von der "min. Zeit" (kleinste erlaubte Einschaltdauer des angeschlossenen Gerätes). Die Stellgröße bestimmt das Verhältnis ton/Zyklus und damit die Schaltzeiten.

10.2.1.5.1 Schaltzeiten der Magnetventile

Die Schaltzeiten des DULCOMETER[®] D1Cb / D1Cc (Magnetventil) hängen von der Zykluszeit ab und von der "min. Zeit" (kleinste erlaubte Einschaltdauer des angeschlossenen Gerätes). Die Stellgröße bestimmt das Verhältnis t_{on}/Zyklus und damit die Schaltzeiten. Die "min. Zeit" beeinflusst die Schaltzeiten in zwei Situationen:

1. theoretische Schaltzeit < min. Zeit

Abb. 61: theoretische Schaltzeit < min. Zeit

Der DULCOMETER[®] D1Cb / D1Cc schaltet so viele Zyklen lang nicht ein, bis die Summe der theoretischen Schaltzeiten die "min. Zeit" übersteigt. Dann schaltet er für die Dauer dieser Zeitsumme ein.

2. theoretische Schaltzeit > (Zyklus - min. Zeit):

Abb. 62: theoretische Schaltzeit > (Zyklus - min. Zeit) und berechnete Schaltzeit < Zyklus

Der DULCOMETER® D1Cb / D1Cc schaltet so viele Zyklen lang nicht aus, bis die Differenzen zwischen Zyklus und theoretischer Schaltzeit die "min. Zeit" übersteigen.

10.3 Einstellen der Grenzwerte

Abb. 63: Grenzwerte

Die untere Display Reihe in Grafik A0028 ist nur dann sichtbar, wenn im Menü *Kapitel 10.2 "Relais einstellen" auf Seite 112* die Relais als Grenzwert-Relais oder als Stellglieder definiert wurden.

Einstellmöglichkeiten im Menü "Grenzwerte einstellen"

		Ν	lögliche Werte		
	Werkseinstel- lung	Schrittweite	Unterer Wert	Oberer Wert	Bemer- kung
Art der Grenz- wertverlet- zung					Grenz- wertverlet- zung bei Über bzw.
Grenze1	Unten	Unten / Oben /	Unten	Oben	schreitung
Grenze 2	Oben	Aus			
Grenzwert Grenze 1	20 %	1 %			
Grenzwert Grenze 2	80 %	1 %		Ohannanaa	
Hysterese Grenzwert	2 %	1 %		Messwert	Wirkt in Richtung Aufhebung der Grenz- wertverlet- zung

		N	Mögliche Werte				
	Werkseinstel- lung	Schrittweite	Unterer Wert	Oberer Wert	Bemer- kung		
Kontroll- zeit Grenzen ∆t ein	Aus	1 s	1 s	9999 s	Führt zu Meldung und Alarm, Aus = 0 s, Funktion ausge- schaltet Keine Mel- dung, kein Alarm		
Regelung	Ein	Ein					
		Aus					
Grenzwert 1 (GW1)	Aktiv geschlossen	Aktiv geschlossen/			Reagiert wie		
Grenzwert 2 (GW2)	Aktiv geschlossen	Aktiv olien			Schließer		
Einschalt- verzöge- rung ∆t ein	0 s	1 s	0 s	9999 s	0 s = aus		

Steht die Grenzüberschreitung länger als die "Kontrollzeit Grenzwerte (Δt ein)" an, dann wird eine quittierbare Fehlermeldung ausgelöst und das Alarmrelais fällt ab. Ist zusätzlich "Regelung" auf "Aus" gestellt, dann stoppt der Regelvorgang.

"Grenzwert unten" bedeutet, dass das Grenzwertkriterium bei Unterschreiten verletzt wird.

"Grenzwert oben" bedeutet, dass das Grenzwertkriterium bei Überschreiten verletzt wird.

Der DULCOMETER® D1Cb / D1Cc besitzt die Möglichkeit eine "Hysterese Grenzwerte" zu definieren.

Die "Hysterese" wirkt in Richtung der Aufhebung der Grenzwertverletzung, d.h. wurde der "Grenzwert 1 oben" von z.B. pH 7,5 bei einer eingestellten Hysterese Grenzwerte von z.B. pH 0,20 überschritten, so entfällt das Kriterium für eine Grenzwertverletzung beim Unterschreiten von pH 7,3. Das Hystereseverhalten für einen "Grenzwert unten" funktioniert analog (der Hysteresewert wird hier zum Grenzwert addiert). Auf diese Weise kann auf ein externes Relais in Selbsthaltung verzichtet werden.

Steht die Grenzüberschreitung länger als die "Verzögerungszeit Grenzwerte (Δt ein)" an, dann wird eine quittierbare Fehlermeldung ausgelöst und das Alarmrelais fällt ab. Ist zusätzlich "Regelung" auf "Aus" gestellt, dann stoppt der Regelvorgang.

Abb. 64: Hysterese

Wenn die Relais als Grenzwertrelais definiert sind, schalten sie bei einer Grenzwertverletzung zusätzlich zum Alarmrelais und es wird im Display durch die Symbole 1 oder L die Richtung der Grenzwertverletzung angezeigt.

Für die Grenzwertrelais können für Grenzwert 1 und Grenzwert 2 unterschiedliche Anzugs- (Δt ein) und Abfallverzögerungen (Δt aus) eingestellt werden. Diese verhindern ein Hin- und Herschalten der Grenzwertrelais, wenn der Grenzwert nur kurzfristig überschritten wird (Dämpfungsfunktion).

Wenn keine Grenzwertrelais vorhanden sind, können trotzdem Grenzwerte eingegeben werden. Der DULCOMETER[®] D1Cb / D1Cc zeigt die beschriebenen Reaktionen bei Grenzwertverletzung

Grenzwertrelais als Stellglied

Sind die Relais als Stellglied definiert, dann reagieren sie wie Stellausgänge. Beispiel: Im Fall einer aktivierten Pause oder im Alarmfall, fällt ein betätigtes Grenzwertrelais ab.

10.4 Regelung einstellen

Abb. 65: Regelung

Bei Regelung mit Totzone wird die Stellgröße bei Messwerten innerhalb der Totzone nicht verändert. Die Einstellbereiche werden vom DULCOMETER $^{\circ}$ D1Cb / D1Cc vorgegeben.

Einstellwerte der Regelung

		Mögliche Wer	Mögliche Werte					
	Werksein- stellung	Schrittweite	Unterer Wert	Oberer Wert	Bemerkung			
Regelung	normal	normal mit Totzone Manuell			Bei Rege- lung mit Tot- zone wird als Stell- größe bei Messwerten innerhalb der Totzone nur die Addi- tive Grund- last ange- geben			
Sollwert	0.5 * Mess- bereich	abhängig von Mess- größe und Messbereich	untere Grenze Messbereich	obere Grenze Messbereich	Bei Rege- lung mit Tot- zone sind 2 Sollwerte erforderlich. Sollwert 1 > Sollwert 2			
Regelpara- meter xp	10 % vom Messbereich	abhängig von Mess- größe und Messbereich	1 % vom Messbereich	120 % vom Messbereich				
Regelpara- meter Tn	aus	1 s	1 s	9999 s	Funktion aus = 0 s			
Regelpara- meter Tv	aus	1 s	1 s	2500 s	Funktion aus = 0 s			
Additive Grundlast	0 %	1 %	-100 %	+100 %				

		Mögliche Wer			
	Werksein- stellung	Schrittweite	Unterer Wert	Oberer Wert	Bemerkung
Manuell Dosieren	0 %	1 %	- 100 %	+100 %	
↑ Kontroll- zeit	aus	1 min	1 min	999 min	
↓ Kontroll- zeit	aus	1 min	1 min	999 min	
Schwelle	90 %	1 %	0 %	100 %	

10.5 Dosierkontrolle einstellen

Abb. 66: Dosierzeit: Kontrollzeit und die Auslöseschelle der Stellgröße einstellen.

Einstellwerte der Regelung

		Mögliche Wer			
	Werksein- stellung	Schrittweite	Unterer Wert	Oberer Wert	Bemerkung
↑ Kontroll- zeit	aus	1 min	1 min	999 min	
↓ Kontroll- zeit	aus	1 min	1 min	999 min	
Schwelle	90 %	1 %	0 %	100 %	

Erklärung: Was bewirken Kontrollzeit und Schwelle?

Abb. 67: Kontrollzeit

Die *[Kontrollzeit]* der Regelung soll verhindern, dass im Fall einer Störung die Überdosierung einer Chemikalie stattfindet.

Beispiel: Der Sensor wird so von Messwasser angeströmt, dass trotz Dosierung keine Chemikalie an den Sensor kommt. Der Sensor kann dann keine Veränderung des Messwertes feststellen. Es befinden sich nun genug Chemikalien im Messwasser, der Regler dosiert aber weiter, weil er keine Veränderung des Messwertes feststellt. Hier sichert die *[Kontrollzeit]* den Regelprozess ab. Der Regler stoppt die Regelung und somit auch die Dosierung von Chemikalien. Die Regelung wird gestoppt, wenn die Stellgröße während einer einzustellenden Zeit (= [Kontrollzeit]) oberhalb einer Stellgrößenschwelle (=[Schwelle]) liegt. Die [Kontrollzeit] kann für die Regelrichtungen [heben ↑] und [senken ↓] unterschiedlich eingestellt werden. Dies ist z.B. bei einer zweiseitigen pH-Regelung sinnvoll, wenn die Konzentrationen der verwendeten Säuren und Laugen unterschiedlich sind.

Auslöseschwelle	
Stellgröße (±)	
40%	A0746

Abb. 68: Schwelle

Es muss weiterhin die maximal erlaubte Stellgrößenschwelle [Schwelle] eingestellt werden = maximal erlaubte Stellgröße.

ĵ

Die Regelung ihres Prozesses

Die Werte für [Kontrollzeit] und [Schwelle] hängen von dem Prozess ab, indem die Messung und Regelung stattfindet. Diese Werte können sehr individuell sein und hängen von vielen Faktoren ab (wie z.B. eingesetzte Chemikalien etc.). Deswegen können wir Ihnen auch keine Werte vorgeben. Diese Werte müssen Sie selbst ermitteln.

Bevor Sie die *[Kontrollzeiten]* und die *[Schwelle]* festlegen und einstellen können, müssen Sie die Regelung ihres Prozesses über einen repräsentativen Zeitraum beobachten und die benötigten Dosierzeiten und Stellgrößen ermitteln.

Sie müssen die *[Kontrollzeiten]* und die *[Schwelle]* so wählen, dass sie im normalen Betrieb nicht überschritten werden. Tritt eine Verletzung der *[Kontrollzeit]* der Regelung ein, dann wird die Regelung gestoppt und eine Fehlermeldung wird angezeigt. Sie müssen diese Fehlermeldung quittieren, um die Regelung wieder zu starten.

ĵ

Verletzung der Kontrollzeit

Wenn eine Verletzung der [Kontrollzeit] wiederholt eintritt, dann müssen Sie den Fehler in Ihrem Prozess beseitigen oder die Werte für die [Kontrollzeiten] und die [Schwelle] neu ermitteln und einstellen.

- 1. Mit der *[Eingabe]*-Taste die Fehlermeldung quittieren
- 2. Mit der [Start/Stop]-Taste den Regler in Normalbetrieb zurücksetzen

10.6 mA-Ausgang einstellen

Abb. 69: mA-Ausgang

Einstellwerte des mA-Ausgang

		Mögliche We	Mögliche Werte			
	Werkseinstel- lung	Schrittweite	Unterer Wert	Oberer Wert	Bemerkung	
Zuordnung	Aus	Messwert				
der Große		Stellgröße			Wenn Rege- lung vor- handen mög- lich	
		Korrektur- wert			Nur mit Kor- rekturgröße vorhanden	
		Aus				
Bereich	0 – 20 mA	0-20 mA				
		4-20 mA				
		3,6/4-20 mA			Absenkung auf 3,6 mA wenn Alarm- relais schaltet	

		Mögliche We	rte		
	Werkseinstel- lung	Schrittweite	Unterer Wert	Oberer Wert	Bemerkung
Bereich Messwert	0 ppmmax. Messbereich	0,01 ppm	0 ppm	obere Grenze	Minimalbe- reich 0,1 ppm
	- 1 pHmax. Messbereich	0,01 pH	-1 pH	reich	
	0 mVmax. Messbereich	1 mV	- 1200 mV		
	0,0 °Cmax. Messbereich	0,1 °C	0,0 °C		
	mA	0,01 mA	- 1 mA		
Bereich Stellgröße	-100 % - 0 %	1 %	-100 %	+ 100%	Minimalbe- reich 1 %
Bereich Korrektur- wert	0 – 100 °C	0,1 °C	O°C	100 °C	Minimalbe- reich 1 °C
Fehler- strom	420mA/ 21,5mA	aus 3,6/4 20 mA 420mA/ 21,5mA			

10.7 Allgemeine Einstellungen

Abb. 70: Allgemeine Einstellungen

In diesem Menü können die nachfolgend beschriebenen Funktionen ausgewählt werden.

10.7.1 Messgröße/Messbereich einstellen

Fehldosierung durch falschen Messbereich

Mögliche Folge: Tod oder schwerste Verletzungen

- Bei Änderung der Messbereichszuordnung müssen in allen Menüs die Einstellungen überprüft werden
- Bei Änderung der Messbereichszuordnung muss der Sensor bzw. das Messgerät neu kalibriert werden
- Maßgeblich f
 ür den Messbereich, ist der Messbereich des Sensors bzw. des Messger
 ätes!

Abb. 71: Messbereich

Im Einstellbereich "Messgröße ändern" kann man die für den jeweiligen Prozess notwendige und für den Sensor bzw. das Messgerät zutreffende Messgröße auswählen. Je nach Messgröße müssen verschiedene Einstellfenster abgearbeitet werden, die von der Software des DULCOMETER[®] D1Cb / D1Cc zur Verfügung gestellt werden. Die Einstellung, Auswahl und Bestätigung der Werte erfolgt mit den Tasten (), (), (), ()

10.7.2 [Messwert] einstellen

Sensoren von Fremdanbietern

Diese Einstellung dient ausschließlich der Anpassung des DULCOMETER[®] D1Cb / D1Cc an die Sensoren von Fremdanbietern. Sensoren von Fremdanbietern können über Messbereiche verfügen, die von den Standardvorgaben des DULCOMETER[®] D1Cb / D1Cc abweichen. Um einen Sensor von Prominent an den DULCOMETER[®] D1Cb / D1Cc anzupassen, verwenden Sie bitte nur das Menü unter *"Allgemeine Einstellungen"*, siehe *Skapitel 5.1.2 "Auswahl der Messgröße und des Messbereiches" auf Seite 53*

Fehldosierung durch falschen Messbereich

Mögliche Folge: Tod oder Verletzungen.

- Maßgeblich für den Messbereich, ist der Messbereich des Sensors!
- Bei Änderung der Messbereichszuordnung müssen in allen Menüs die Einstellungen überprüft werden
- Bei Änderung der Messbereichszuordnung muss der Sensor neu kalibriert werden
- Die entsprechenden Informationen sind der Bedienungsanleitung des Sensors/ Messgerätes zu entnehmen

Abb. 72: Messwert einstellen (am Beispiel "Chlor")

10.7.3 Unterfunktionen des Menüs "Allgemeine Einstellungen"

Folgende Unterfunktionen finden Sie im Menüpunkt "Allgemeine Einstellungen".

10.7.3.1 Bedienmenü

Im Menüpunkt "Bedienmenü" kann die Sprache in der das Bedienmenü angezeigt wird ausgewählt werden und außerdem zwischen "eingeschränkten" und "vollständigen" Bedienmenü gewählt werden.

10.7.3.2 Kalibriertimer

Der Kalibriertimer erinnert an eine routinemäßig erforderliche Kalibrierung. Der Kalibriertimer wird durch eine Eingabe einer Anzahl von Tagen aktiviert. Nach deren Ablauf ist eine Nachkalibrierung erforderlich

Der Kalibriertimer dient dazu, den Bediener des Gerätes auf eine notwendige Neukalibrierung der angeschlossenen Sensoren zu erinnern. Der Zeitpunkt ergibt sich dabei nicht direkt aus dem Zustand der Sensoren, sondern aus dem Ablauf eines vom Bediener eingestellten Zeitraums, Wird der Kalibriertimer aktiviert, kann ein Intervall zwischen 1..100 Tagen eingestellt werden. Ist der Kalibriertimer aktiviert und wird das Menu erneut aufgerufen scheint zur Information die verbleibende Zeitspanne bis zum Ablauf des Timers. Eine Restzeit unter einem Tag wird in der Einheit "Stunden" angezeigt.

Rückstellen des Timers: Der Kalibriertimer wird automatisch nach einer gültigen Kalibrierung wieder auf seinen Startwert zurückgesetzt. Eine evtl. Displaymeldung verschwindet.

"Snooze"-Modus: Ist der Kalibriertimer abgelaufen, kann die Meldung im Display durch Drücken der 🛞 Taste für eine Zeitdauer von 15 Minuten quittiert werden. Danach erfolgt erneut die Meldung "Kalibriertimer". Das Drücken der 🛞 Taste muss geschehen, solange die Meldung "Kalibriertimer" zu sehen ist. Wird eine andere Meldung im Wechsel angezeigt, muss gewartet werden, bis die Meldung "Kalibriertimer" erneut erscheint. Eventuell anstehende Fehlermeldungen haben Vorrang.

10.7.3.3 Waschtimer

Der Waschtimer dient dazu, den Bediener des DULCOMETER[®] D1Cb / D1Cc an eine notwendige Reinigung der angeschlossenen Sensoren zu erinnern. Der Zeitpunkt ergibt sich dabei nicht direkt aus dem Zustand der Sensoren, sondern aus dem Ablauf eines vom Bediener eingestellten Zeitraumes.

Im Systemmenü gibt es dazu den Eintrag "Waschtimer". In diesem Menü kann der Waschtimer aktiviert und deaktiviert werden. Wird der Waschtimer aktiviert, kann ein Intervall zwischen 1..100 Tagen eingestellt werden. Ist der Waschtimer aktiviert und wird das Menü erneut aufgerufen scheint zur Information die verbleibende Zeitspanne bis zum Ablauf des Timers. Eine Restzeit unter einem Tag wird in der Einheit "Stunden" angezeigt.

Rückstellen des Timers: Ist die Zeit des Waschtimers abgelaufen, kann dieser im dazugehörigen Menü wieder zurückgesetzt werden.

"Snooze"-Modus: Ist der Waschtimer abgelaufen, kann die Meldung im Display durch Drücken der 💮 Taste für eine Zeitdauer von 15 Minuten quittiert werden. Danach erfolgt erneut die Meldung "Waschtimer". Das Drücken der 💮 Taste muss geschehen, solange die Meldung "Waschtimer" zu sehen ist. Wird eine andere Meldung im Wechsel angezeigt, muss gewartet werden, bis die Meldung "Waschtimer" erneut erscheint. Eventuell anstehende Fehlermeldungen haben Vorrang.

10.7.3.4 Messgröße ändern

Im Menüpunkt [Messgröße ändern] stehen alle per Freischaltcode aktivierten Messgrößen zur Verfügung. & Kapitel 10.7.1 "Messgröße/Messbereich einstellen" auf Seite 128

10.7.3.5 Zusätzliche Funktionen

Im Menüpunkt "Zusätzliche Funktionen" kann der Funktionsumfang des DULCOMETER® D1Cb / D1Cc durch die Eingabe eines optional erhältlichen Freischaltcode verändert werden. \bigotimes *"Funktionserweiterung" auf Seite 55*

10.7.3.6 Betriebsstundenzähler

Der DULCOMETER[®] D1Cb / D1Cc verfügt über einen resetfesten Betriebsstundenzähler.

Menüpunkt "Betriebsstunden": Der Betriebsstundenzähler besitzt eine Auflösung von einer Minute und einen maximalen Fehler bei Stromunterbrechung von 5 Minuten. Der Betriebsstundenzähler kann nicht zurückgesetzt werden.

10.7.3.7 Kalibrierlogbuch

Im internen Kalibrierlogbuch werden die Daten der gültig durchgeführten Sensorkalibrierungen gespeichert. Es können bis zu 30 Kalibrierungen gespeichert werden. Danach wird der älteste Eintrag mit dem neuestem Eintrag überschrieben.

Abgespeichert werden:

 Zeitpunkt der Kalibrierung (Stand des Betriebsstundenzählers)

- d = Tag
- h = Stunde
- m = Minute
- Nullpunkt (ohne Einheit)
- Steilheit (ohne Einheit)

10.7.3.8 Softwareversion

Im Menüpunkt *[Softwareversion]* wird die Version der aktuell installierten Software und die Revision der Hardware des DULCOMETER[®] D1Cb / D1Cc angezeigt.

10.7.3.9 Alarmrelais

Das Alarmrelais signalisiert zusammen mit dem ξ und einer Fehlermeldung einen anstehenden Fehler. Das können sein:

- allgemeine Gerätefehler
- Stromausfall: Das Relais zieht an wenn am Regler Spannung anliegt und gegenwärtig kein Fehler ansteht. Fällt die Spannung ab, dann fällt das Relais ab
- Messbereichsüber-/unterschreitung
- Grenzwertverletzung auch ohne Grenzwertrelais, wenn die Kontrollzeit "Grenzwert >0s" eingestellt und überschritten wird
- Sensorausfall bei pH (Kurzschluss oder kein Sensor angeschlossen)
- Überlast/Kurzschluss am mA Sensoreingang
- wenn im Menüpunkt "Pause" Alarmrelais "aktiv" gewählt wurde und die Pause aktive ist

10.7.3.10 Sensor Überwachung (nur pH Sensor mV)

Bei der konfigurierten Messgröße pH kann ein an den potentiometrischen Eingang angeschlossener Sensor auf Fehlerzustände überprüft werden. Standardmäßig ist die Überprüfung deaktiviert.

Überprüfung auf Bruch des Sensors: Die Überprüfung auf Sensorbruch (Glasbruch) kann einen defekten Sensor anhand des niedrigen Innenwiderstands erkennen. Funktionstüchtige pH-Sensoren sind sehr hochohmig mit Innenwiderständen im hohen MΩ-Bereich. Der DULCOMETER[®] D1Cb / D1Cc ist in der Lage, gebrochene Sensoren anhand ihres Innenwiderstandes zu erkennen. Werden sehr niederohmige Sensoren verwendet, sollte diese Funktion deaktiviert werden.

Siehe auch: 🖏 Tabelle auf Seite 144

Überprüfung auf Vorhandensein: Die "Überprüfung auf Vorhandensein" erkennt einen nicht angeschlossenen Sensor oder ein gebrochenes Kabel. Werden pH-Sensoren verwendet, welche über ihren gesamten Betriebsbereich über einen hohen Innenwiderstand verfügen können, so ist diese Funktion zu deaktivieren.

10.7.3.11 Pause

Pause Funktion "Normal"

Wenn der Pause-Kontakt geschlossen wird, setzt der Regler die Stellausgänge auf " 0", so lange der Pause-Kontakt geschlossen ist bzw. für eine anschließende Verzögerungszeit " td" (wenn " td > 0" min eingestellt). Während der Pause-Kontakt geschlossen ist, ermittelt der Regler im Hintergrund den " P" Anteil.

PID-Regelung

Ein I-Anteil ist generell nur dann vorhanden, wenn im Einstellmenü " Regelung einstellen?" " Tn > 0" eingestellt wurde.

Ausnahme: Die mA-Ausgänge für Messwert oder Korrekturwert sind von der Pause nicht betroffen.

Bei PID-Regelung: Ein beim Schließen des Pause-Kontaktes vorhandener I-Anteil wird gespeichert. Nach Öffnen des Pause-Kontaktes bleiben die Stellausgänge für die Verzögerungszeit *"td"* auf *"0"*. Die Verzögerungszeit *"td"* muss so eingestellt werden, dass in dieser Zeit z.B. Messwasser, dass für den typischen Prozess ausreichend Dosiermedium (z.B. Chlor) enthält, bis zum Sensor fließt.

Bei PID-Regelung: Die nach der Pause und dem Ablauf der Verzögerungszeit " td" ausgegebene Stellgröße setzt sich aus dem aktuellen P-Anteil und (wenn " *Tn>* 0" eingestellt) dem gespeicherten I-Anteil zusammen.

Pause Funktion "Hold"

Wenn der Pause-Kontakt geschlossen wird, friert der Regler die Stellausgänge auf den letzten Wert ein, so lange der Pause-Kontakt geschlossen ist bzw. für eine anschließende Verzögerungszeit " td " (wenn " td > 0 " min eingestellt).

Während der Pause-Kontakt geschlossen ist, ermittelt der Regler im Hintergrund den P-Anteil.

Bei PID-Regelung: Auch die mA-Ausgänge für Messwert oder Korrekturwert werden eingefroren. Nach Öffnen des Pause-Kontaktes bleiben die Stellausgänge für die Verzögerungszeit *"td"* eingefroren. Die Verzögerungszeit *"td"* muss so eingestellt werden, dass in dieser Zeit z.B. Messwasser, dass für den typischen Prozess ausreichend Dosiermedium (z.B. Chlor) enthält, bis zum Sensor fließt.

Bei PID-Regelung: Die nach der Pause und dem Ablauf der Verzögerungszeit " td" ausgegebene Stellgröße setzt sich aus dem aktuellen P-Anteil und (wenn " *Tn> 0*" eingestellt) dem neu ermittelten I-Anteil zusammen.

10.7.3.12 Temperatur

Im Menüpunkt "Temperatur" kann die Einheit in der die Temperatur angezeigt wird, zwischen °C und °F umgeschaltet werden.

Wartung

11 Wartung

■ Benutzer Qualifikation: geschulter Anwender, siehe & Kapitel 1.2 "Benutzer Qualifikation" auf Seite 9

Der DULCOMETER[®] D1Cb / D1Cc ist wartungsfrei.

11.1 Sicherungswechsel DUL-COMETER® D1Cb / D1Cc

\land WARNUNG!

Gefahr durch elektrische Spannung

Mögliche Folge: Tod oder schwerste Verletzungen.

- Der DULCOMETER[®] D1Cb / D1Cc verfügt über keinen Netzschalter
- Bei Arbeiten im Inneren des Reglers, Regler über externen Schalter oder durch das Entfernen der externen Sicherung spannungsfrei schalten

Gefahr durch elektrische Spannung

Mögliche Folge: Tod oder schwerste Verletzungen.

- Auch nach dem Trennen der Spannungsversorgung kann an den Klemmen XR 1 – 3 Netzspannung anliegen
- Diese können separat von extern mit Netzspannung versorgt werden
- Die Klemmen XR 1 3 separat von der Netzspannung trennen

HINWEIS!

Nur Feinsicherungen 5 x 20 mm verwenden

Mögliche Folge: Schädigung des Produkts oder seiner Umgebung

– 100 – 240
 V ♥ *Tabelle auf Seite 146*

Sicherungswechsel

Die Netzsicherung befindet sich in einem geschlossenen Sicherungshalter im Geräteinneren, siehe Abb. 10.

- **1.** Regler spannungsfrei schalten
- 2. Regler öffnen und Gehäuseoberteil in "Parkstellung bringen"
- 3. Abdeckkappe der Feinsicherung ausbauen
- **4.** Feinsicherung mit geeignetem Werkzeug ausbauen
- 5. Feinsicherung mit geeignetem Werkzeug einbauen
- 6. Abdeckkappe der Feinsicherung einbauen
- 7. Gehäuseoberteil aufsetzen und Regler schließen

11.2 Zusammenfassung der Fehlertexte

Fehler	Fehlertext	Symbol	Auswir- kung auf Stellgröße	Auswir- kung auf Regelung	Alarm mit Quittie- rung	Bemer- kungen
Stellgröße Über- schreiten Kontroll- zeit Mess- wert	Sensor prüfen	ε	Grundlast	Stop	Ja	Funktion abschaltb ar
Signal- über-/ unter- schreitung (nur bei mA-Ein- gang)	Eingang	ε	Grundlast	Stop	Ja	Signal <3,0 ±0,2 mA oder >23 ±0,2 mA
Kalibrie- rung Sensor mit Fehler	Abgleich mangel- haft	ε	Grundlast	Stop	Nein	bei Fehler mit unru- higem Messwert wird wei- terdosiert

Fehler	Fehlertext	Symbol	Auswir- kung auf Stellgröße	Auswir- kung auf Regelung	Alarm mit Quittie- rung	Bemer- kungen
Korrektur- größe Sig- nalüber-/ unter- schreitung	Temp-Ein- gang	ε	Grundlast	Stop	Ja	Pt100- Signal >138,5 Ω Signal , <100 Ω
						Pt1000- Signal >1385 Ω Signal, < 1000 Ω
						Der letzte gültige Wert wird weiter- verwendet
Grenz- wertverlet- zung nach Kontroll- zeit Grenzwert	Grenz- wert1 Grenz- wert2	צ צ	Stop oder Grundlast	Stop	Ja Ja	Funktion abschaltb ar

Bedien- schritt	Hinweis- text	Symbol	Auswir- kung auf Stellgröße	Auswir- kung auf Regelung	Alarm mit Quittie- rung	Bemer- kungen
Pausen- Kontakt	Pause	З ЕО	Stop	Stop	Nein/Ja*	Keine wei- tere Feh- lerüberprü-
	Pause/ Hold	ε		PI-einge- froren		fung
Stop- Taste	Stop	E EO	Stop	Stop	Nein	Relais fallen ab

Wartung

Bedien- schritt	Hinweis- text	Symbol	Auswir- kung auf Stellgröße	Auswir- kung auf Regelung	Alarm mit Quittie- rung	Bemer- kungen
Während Kalibrie- rung Sen- soren			Grundlast		Nein	keine Feh- lerbehand- lung der Mess- größe
Sensors- teilheit zu gering		ε	Grundlast		Nein	25%> Sensors- teilheit
Sensors- teilheit zu hoch		٤	Grundlast		Nein	>300% der Normsteil- heit
DPD <wert %<br="" 2="">Messbe- reich</wert>	DPD Wert zu klein					
Nullpunkt	Nullpunkt gering	ε				Signal <3 mA
	Nullpunkt hoch					Signal >5 mA

*Davon abhängig, ob in "Allgemeine Einstellungen": "Alarm aus" oder "Alarm ein"

12 Technische Daten

12.1 Umweltbedingungen DULCOMETER® D1Cb / D1Cc

Zulässige Umgebungsbedingungen:

Wandaufbau:	0° C – 50° C
Schalttafeleinbau:	0° C – 50° C
Alle Varianten:	10 - 95% relative Luftfeuchtigkeit (nicht kondensierend)

Zulässige Lagerbedingungen:

Alle Varianten:	-10° C – 60° C
Alle Varianten:	< 95% relative Luftfeuchtigkeit (nicht kondensierend)

12.2 Schalldruckpegel

Keine Geräuschentwicklung messbar.

12.3 Werkstoffangaben

Teil	Material
Gehäuse Ober- und Unterteil	PPE-GF10
Halterung Rückseite Gehäuse Unterteil	PPE-GF20
Folientastatur	Polyesterfolie PET
Dichtung	Moosgummi CR
Haltebügel und Schrauben	Stahl galvanisch verzinkt
Schrauben M5	Edelstahl A2

12.4 Chemische Beständigkeit

Das Gerät ist beständig gegen normale Atmosphäre in Technikräumen

12.5 Maße und Gewichte

D1Cb

Gerät komplett:	198 x 200 x 76 mm (B x H x T)
Verpackung:	390 x 295 x 155 mm (B x H x T)
Gewicht des Gerätes ohne Verpackung:	ca. 1,2 kg
Bruttogewicht des Gerätes mit Verpa- ckung:	ca. 2,0 kg

D1Cc

Gerät komplett:	96 x 96 x 140 mm (B x H x T)
Verpackung:	390 x 295 x 155 mm (B x H x T)
Gewicht des Gerätes ohne Verpackung:	ca. 1,2 kg
Bruttogewicht des Gerätes mit Verpa- ckung:	ca. 2,0 kg

13 Elektrische Daten

Netzanschluss	
Nennspannungsbereich:	100 – 230 VAC ±10 %
Frequenz	50 – 60 Hz
Stromaufnahme:	95 – 250 mA

Der Netzanschluss ist von allen anderen Schaltungsteilen durch verstärkte Isolierung getrennt. Kein Netzschalter am Gerät vorhanden, eine Gerätesicherung ist vorhanden.

Leistungsrelais	
Belastbarkeit der Schaltkontakte:	5 A; keine induktive Lasten.
	Bei induktiven Lasten RC-Schutzbeschal- tung (Option) verwenden.

Alarmrelais	
Belastbarkeit der Schaltkontakte:	5 A; keine induktive Lasten.
	Bei induktiven Lasten RC-Schutzbeschal- tung (Option) verwenden.

Ausgänge galvanisch von allen anderen Schaltungsteilen durch verstärkte Isolierung getrennt.

Digitaleingang	
Leerlaufspannung:	6 V DC max.
Kurzschlussstrom:	ca. 0,6 mA
Max. Schaltfrequenz:	500 Hz bei 50% Füllfaktor

HINWEIS!

Keine Spannung einspeisen

Zum Anschluss eines externen Halbleiter- oder mechanischen Schalters.

mA- Ausgang	
Strombereich:	0/3,8 – 23 mA
Im Fehlerfall:	3,6 bzw. 21,5 mA
Max. Bürde:	450 Ω bei 20,5 mA
Max. Ausgangsspannung:	18 V DC
Überspannungsfest bis:	±30 V
Ausgabegenauigkeit:	±0,25 % des Bereichs

Galvanisch von allen anderen Anschlüssen (500 V) getrennt

Pumpenansteuerung	
Max. Schaltspannung:	50 V (Schutzkleinspannung)
Max. Schaltstrom:	50 mA
Max. Reststrom (offen):	10 μΑ
Max. Widerstand (geschlossen):	60 Ω
Max. Schaltfrequenz (HW) bei 50% Füll- faktor	500 Hz

2 digitale Ausgänge über OptoMos-Relais galvanisch untereinander und von allen anderen Anschlüssen getrennt.

mA Eingang	
Strommessbereich	024 mA
Spannungsausgang für passive Geber:	ca. 21 V/max. 35 mA/ Ri min. 50 Ω
Messgenauigkeit:	\pm 0,25 % des Bereichs bis 22 mA *
Überspannungsfest bis:	±50 V
Kurzschlussfest	Ja

* Werte ab 22 mA haben nur noch informativen Charakter

Zum Anschluss aktiver und passiver Stromgeber in der 2- und 3-Leitertechnik. Nicht galvanisch getrennt von dem Temperatur- und dem mV- Eingang.

mV-Eingang und mA-Eingang nicht gleichzeitig anschließen. Werte werden verfälscht und angeschlossene Sensoren bzw. Messgeräte geschädigt

Abschaltung der Versorgung und des Strommesswiderstandes im Fehlerfall, Reaktivierung zyklisch per Software.

mV Eingang	
Messbereich:	-1 V+1 V
Messgenauigkeit:	±0,25 % des Bereichs
Sensorüberwachung des Einganges (Schwelle niederohmig) (abschaltbar):	< ca. 500 kΩ (Kurzschluss)
Sensorüberwachung des Einganges (Schwelle hochohmig) (abschaltbar):	> ca. 1,2 GΩ
Überspannungsfest bis:	±5 V

Zum Anschluss von potentiometrischen Sensoren. Kurzschlussüberwachung per Software.

mV und mA nicht gleichzeitig anschließen. Werte werden verfälscht.
Nicht galvanisch getrennt von dem mA- und dem Temperatureingang. Klemme zum Anschluss einer Elektrode zum Ausgleich des Potentials der Messflüssigkeit

Temperatureingang	
Temperaturmessbereich	0100 °C
Messstrom	ca. 0,96 mA
Messgenauigkeit:	±0,5 % des Messbereichs
Überspannungsfest bis	±5 V
Kurzschlussfest	Ja

Zum Anschluss von Pt100 oder Pt1000 Temperatursensoren in der 2-Leitertechnik. Es wird automatisch zwischen Pt100 / Pt1000 umgeschaltet. Nicht galvanisch getrennt von dem mA- und dem mV- Eingang

14 Ersatzteile und Zubehör DULCOMETER[®] D1Cb / D1Cc

Ersatzteile und Zubehör DULCOMETER® D1Cb

Ersatzteile	Teilenummer
Feinsicherung 5x20 T 1.6A	732411
Verschraubung M12x1.5 kpl. metrisch	1032245
Halbverschraubung kpl. metrisch	1031506
Wandhalter	792713
Schirmklemme Oberteil	733389
Etiketten D1C/D2C Messgröße	1030506

Zubehör	Teilenummer
Einbausatz Schalttafel	792908
RC-Schutzbeschaltung Nachrüstsatz D1Cb	1034238
SN6-Eingang Nachrüstsatz	1036885

Ersatzteile und Zubehör DULCOMETER® D1Cc

Ersatzteile	Teilenummer
Feinsicherung 5x20 T 1.6A	732411
Schirmklemme Oberteil	733389
Etiketten D1C/D2C Messgröße	1030506

Zubehör	Teilenummer
Buchsenleiste 2 polig für Relais und Spannungsversor- gung	731043
Buchsenleiste 3 polig für Alarmrelais	731044
Buchsenleiste 8 polig, schwarz	733562
Buchsenleiste 8 polig, rot	733563

15 Altteileentsorgung

■ Benutzer Qualifikation: unterwiesene Personen, siehe & Kapitel 1.2 "Benutzer Qualifikation" auf Seite 9

HINWEIS!

Vorschriften Altteileentsorgung

 Beachten Sie die zurzeit f
ür Sie g
ültigen nationalen Vorschriften und Rechtsnormen

ProMinent Dosiertechnik GmbH, Heidelberg nimmt die dekontaminierten Altgeräte bei ausreichender Frankierung der Sendung zurück.

Die aktuell gültige Dekontaminationserklärung finden Sie als Download auf <u>www.prominent.com</u>.

16 Eingehaltene Normen und Konformitätserklärung

Die CE-Konformitätserklärung für den Regler finden Sie als Download unter <u>http://www.prominent.de/Service/</u> <u>Download-Service.aspx</u>

EG - Niederspannungsrichtlinie (2006/95/ EG) für den Merkmalswert X = 6

EG - EMV - Richtlinie (2004/108/EG) für den Merkmalswert X = 4 oder 6

DIN EN 61010 Sicherheitsbestimmungen für elektrische Mess-, Steuer-, Regel- und Laborgeräte

DIN EN 61326 Elektrische Mess-, Steuer-, Regel- und Laborgeräte - EMV Anforderungen (für Geräte der Klasse A und B)

DIN EN 55014-1 EMV - Anforderungen an Haushaltsgeräte Teil 1 Störaussendung

DIN EN 55014-2 EMV - Anforderungen an Haushaltsgeräte Teil 2 Störfestigkeit

17 Index

Α

Aderendhülsen	28
Allgemeine Einstellungen	127
Allgemeine Gleichbehandlung	2
Auslöseschelle der Stellgröße	123
В	
Bedienereingaben	18
Bedienmenü 65, 70,	81, 100
Befestigungsmaterial	23
Benutzer Qualifikation	9
Blindscheibe	28
Bohrschablone	23
С	
Chemische Beständigkeit	140
D	
Dichtring	28
Dichtschnur	26
DIN 43700	40
DIN EN 55014-1 EMV - Anforde-	
rungen an Haushaltsgeräte Teil 1	140
DIN EN 55014 2 EMV/ Apfordo	149
rungen an Haushaltsgeräte Teil 2	
Störfestigkeit	149
DIN EN 61010 Laborgerät	149
DIN EN 61326	149
Druckring	28
Dübel	23
E	
Eingehaltene Normen	149
Einlaufzeiten	76, 85
Einstellmenüs	66
Entsorgen	148

Ersatzteile 1	46, 147
F	
Flachbandkabel	17
Folientastatur	17
Frage: Welche Normen werden eingehalten?	149
Frage: Wie stelle ich die Auslöse- schelle der Stellgröße ein?	123
Frage: Wie stelle ich die Dosier- kontrolle ein?	123
Frage: Wie stelle ich die Kontroll- zeit ein?	123
Frage: Wo finde ich die Konformi- tätserklärung?	149
Freischaltcode	54
G	
Geräteüberstand	26
Geräuschentwicklung	139
Gewichte	141
Gleichbehandlung	2
Grenzüberschreitung	119
Grenzwerte	118
Grenzwertrelais	120
К	
Kabelummantelung	28
Kalibrierung	75
Klemmenplan	29, 43
Konformitätserklärung	149
Kontermutter	29
Kontrollzeit	123
L	
Lagerbedingungen	139
Luftfeuchtigkeit	139

М

mA-Ausgang	126
Magnetventile	115
Maße	141
Materialstärke	25, 41
Messbereich	128
Messgröße	128
Messwert einstellen	129
Moosgummi	26
Ν	
Netzschalter	18
Normsignalausgänge	76, 85
Nullpunktkalibrierung	
Р	
Parameter	65, 70, 81, 100
Parameter Parkposition	65, 70, 81, 100 27
Parameter Parkposition Polyesterfolie PET	65, 70, 81, 100 27 140
Parameter Parkposition Polyesterfolie PET PPE-GF10	65, 70, 81, 100 27 140 140
Parameter Parkposition Polyesterfolie PET PPE-GF10 PPE-GF20	65, 70, 81, 100 27 140 140 140
Parameter Parkposition Polyesterfolie PET PPE-GF10 PPE-GF20 R	65, 70, 81, 100 27 140 140 140
Parameter Parkposition Polyesterfolie PET PPE-GF10 PPE-GF20 R Regelung	65, 70, 81, 100 27 140 140 140 140
Parameter Parkposition Polyesterfolie PET PPE-GF10 PPE-GF20 R Regelung S	65, 70, 81, 100 27 140 140 140 140
Parameter Parkposition Polyesterfolie PET PPE-GF10 PPE-GF20 R Regelung S Schalldruckpegel	65, 70, 81, 100 27 140 140 140 140 122
Parameter Parkposition Polyesterfolie PET PPE-GF10 PPE-GF20 R Regelung S Schalldruckpegel Schalttafeleinbau	65, 70, 81, 100 27 140 140 140 140 140 140 139 17, 24, 40
Parameter Parkposition Polyesterfolie PET PPE-GF10 PPE-GF20 R Regelung S Schalldruckpegel Schalttafeleinbau Schaltzeiten	65, 70, 81, 100 27 140 140 140 122 122

Senkschrauben	27
Sensorfunktion	. 76, 85
Sicherheitshinweise	7
Stanzschablone	24
Stellausgänge	. 76, 85
Stellglied	120
т	
Technikräumen	140
theoretische Schaltzeit	117
Timer	115
Timerrelais	115
Ü	
Übersicht	73
U	
Umgebungsbedingungen	139
Umweltbedingungen	139
V	
Verzögerungszeit Grenzwerte	119
Vollständiges Bedienmenü	73
W	
Wandaufbau	. 17, 23
Wandhalterung	23
Werkstoffangaben	140
Z	
Zugangscode	66

ProMinent Dosiertechnik GmbH Im Schuhmachergewann 5 - 11 69123 Heidelberg Telefon: +49 6221 842-0 Telefax: +49 6221 842-215 E-Mail: info@prominent.com Internet: www.prominent.com

986374, 5, de_DE